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Abstract—Mirror detection (MD) aims to overcome interfer-
ence caused by reflections and locate mirror regions. Existing
methods focus on designing components to explicitly establish
the associations between physical entities and corresponding
imagings, or utilizing rotation to construct symmetric consistency.
We observe that: a) incomplete and incorrect correspondence
between entities and imagings; b) other physical materials (e.g.,
glass) exhibit characteristics partially similar to mirrors, causing
confusion when they co-occur; c) complex interfering factors (e.g.,
occlusion) and reflection mechanisms may expand vector space
several times over. To address these issues in a unified manner,
we formulate the scene-aware visual reasoning network (SVRNet)
based on visual prompts. Specifically, we construct the prototype-
guided prompt chain reasoning (PPCR) that generates a mixed
chain of thought reasoning based on maximal difference heteroge-
neous prototypes to construct comprehensive spatial location and
semantic perception. Noise may accumulate gradually through
the chain, and crucial clues may also disappear. Therefore, we
design the prompt evolution (PE) to filter out noise and enhance
the coupling between prompts. We further develop the mixture
of prompt injection expert (MPIE) to dynamically select the
optimal injection strategy in the low-rank space based on specific
scene. Due to reflection interference and random parameter
space introducing potential ambiguity, we formulate the three-
way evidence-aware (TEA) loss to quantify the uncertainty,
thereby providing reliable predictions. To leverage historical
knowledge and further disentangle representations, we propose
the frequency prototype contrastive (FPC) loss for learning more
generalizable features across images. Finally, we relabel 25,828
images and formulate the first point-supervised MD framework.
Extensive experiments conducted on four mirror benchmarks
under three settings demonstrate that our method surpasses state-
of-the-art approaches. Promising results are also achieved on six
related benchmarks, showing its generality.

Index Terms—Mirror detection, prompt learning, visual rea-
soning, mixture of experts, uncertainty quantification.
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I. INTRODUCTION

UNlike common segmentation tasks such as semantic
segmentation (SS) that aim to segment physical entities,

mirror detection (MD) focuses on distinguishing imagings and
physical entities, ultimately identifying the reflection area, i.e.,
mirror region. Misidentifying imagings as physical objects
may significantly impact scene understanding [1], [2], 3D
reconstruction [3], visual-language navigation [4], and other
related tasks. Mirrors can be regarded as confounding factors
in the causal reasoning chains, while MD can remove to
accurately model the spatial and logical relationships between
objects.

As shown in Figure 1, existing methods [5]–[9] primarily
adopt an encoding-decoding framework with several compo-
nents to explicitly establish the correlations and differences
between mirror and non-mirror regions, such as depth and
frequency (texture). Some methods [10], [11] utilize rotation
strategy to construct consistency perception between imagings
and entities from image or feature map level. Similar works
[12], [13] employ large-scale visual foundation models with
several adapters for fine-tuning. The foundation models are
trained on large datasets consisting of images with entities,
which may introduce biases to imagings. Only incorporat-
ing adapters is insufficient to address reflection interference.
Furthermore, the above methods have limited applicability.
Due to shooting angles, some scenes only exist partial cor-
respondences, or even only have imagings. Smooth walls,
tabletops, or glass surfaces can also produce reflections and
form imagings, although the optical imaging characteristics
differ from mirrors, leading to confusion. MD task also
faces similar challenges as the SS task, e.g., occlusion and
scale variations. The most straightforward approach is to
design additional modules, but introduces extra parameters and
computational overhead. Therefore, it is necessary to design
an efficient and general method that is effective for various
scenarios. We utilize prompts learned from latent (random)
space to establish spatial semantic modeling and combine
with uncertainty-aware mixture-of-experts (MoE) [14] to inject
prompts, thereby formulating the SVRNet. Hence, we wonder
three questions. 1) Why choose to learn prompts implicitly
rather than explicitly? 2) Why introduce uncertainty estima-
tion? 3) Why inject prompts based on MoE?

We answer the first question. First, explicit prompts, e.g.,
image frequency and depth map, are not easily obtained
and often require additional tools like depth cameras and
task-specific pre-trained models. Conversely, implicit prompt

https://winter-flow.github.io/project/SVRNet


IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2

Reflection

OcclusionSmooth 
Surface

Pseudo-
reflection

Multi-entity 
Single-imaging

Cross-
imaging

Complex 
Background

Multi-object

Only 
Imaging

Small Object

Complex Visual Space

Mirror-Specific Object-General

(a). Pure Encoder-Decoder

(b). Dual Stream

Specific Adapters

Depth/Frequency Maps 
(c). Explicit Prompt

…
(d). Implicit PromptHow to Unify?

Physical Entity

Imaging

Fig. 1. Motivation and Framework Comparison. Our method aims to dynamically and uniformly address the complex visual space of MD across different
scenarios, avoiding the stacking of singular functional components. (a) The naive encoding-decoding represented by HetNet [10]; (b) The dual-stream
represented by SATNet [11]; (c) The explicit visual prompt represented by Spider [15] (not specific for MD task); (d) Our SVRNet.

learning starts from the given data, capturing features from
the random parameter space. Second, explicit prompts struggle
to adapt effectively to content variations, focusing more on
low-level structures, while implicit prompts construct seman-
tic awareness, thus being more suitable for exploring high-
dimensional complex visual spaces. Third, implicit strategy
can establish associations between arbitrary structures of het-
erogeneous or homogeneous nodes, such as chains and trees,
unlike the former’s fixed clues.

We answer the second question. First, learning from latent
space and lack of sufficient priors, the optimization process in
parameter tuning may carry inherent noise, leading to inade-
quate modeling of fine-grained regions. While it is possible
to design purification components, they can only filter out
more obvious noise. Second, due to reflective interference,
prompts may introduce ambiguity, resulting in mismatches or
even misguidance during fusion. Therefore, statistical analysis,
i.e., uncertainty estimation, of expert injection is required to
constrain. We aim for the model to pay more attention to high
uncertainty regions of interest.

We answer the third question. First, based on MoE, we
can scale the network parameters arbitrarily within the same
computational budget, thus expanding the border of represen-
tation space for various tasks. Second, The complexity of the
prompts varies according to the characteristics of the input.
The simpler the visual spatial relationships, the fewer the
prompts required, and the more straightforward the interaction
mode. Fixed processing units struggle to effectively adapt to
such variations; instead, this work can be delegated to some
experts, who collaborate to optimize and determine the best
solution. Third, unlike previous works defining models at the
dataset or task level, we partition each image into multiple
subspaces, dynamically selecting the most suitable one or
more experts to explore the most significant representations
and correlations in different pixels or regions. This enables
us to customize image-level segmentation model, facilitating
mapping from reflection-confused to reflection-aware space.

Technically, inspired by thought chain and causal reasoning
of large language models (LLMs), we propose the prompt

chain reasoning (PPCR) to construct a visual prompt chain
that establishes semantic associations and achieves preliminary
localization through hierarchical inference. Unlike explicit
prompts that leverage prior knowledge of images, we randomly
initialize and learn in the high-dimensional space, which can
be easily disturbed by initial noise and reflections, resulting
in a convoluted and slow learning path towards the optimal
point. Moreover, noise may propagate along the prompt chain,
potentially weakening crucial clues. Therefore, we introduce
the prompt evolution (PE) to filter out noise and enhance
the coupling between prompts. We then propose the mixture
of prompt injection expert (MPIE) to dynamically select the
optimal injection strategy in the low-rank space based on
specific scene. We decouple prompts into high- and low-
frequency and extend the interaction modes from spatial,
channel, and frequency domains to further enhance the het-
erogeneity of experts. To improve discriminative perception,
we crossly provide semantic and position priors to the experts,
i.e., coarse-grained prediction maps and uncertainty maps.
Due to reflection interference causing potential ambiguity in
prompts and features, we propose the three-way evidence-
aware (TEA) loss to quantify the uncertainty, thereby provid-
ing reliable predictions. To leverage historical knowledge and
further disentangle representations, we divide the prototypes
into four classes, i.e., mirror high and low-frequency proto-
types and non-mirror high and low-frequency prototypes, thus
formulating the frequency prototype contrastive (FPC) loss.
By bringing similar prototypes closer and pushing dissimilar
prototypes apart, we aim to learn more general representations
across images. In addition, we expand the existing scribble-
based MD datasets and construct the first point annotation
dataset and framework.

In summary, our main contributions are as follows:

• Incorporating implicit learning of visual prompts, we
propose the SVRNet to establish semantic reasoning for
complex spatial perception. To the best of our knowledge,
we are the first to model MD task from the perspective
of prompt learning.
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• We propose the PPCR to form the mixed chain of visual
thought reasoning, the PE to reduce noise interference
and couple prompts, the MPIE to customize experts for
selecting appropriate injection strategies, the TEA loss to
quantify fusion uncertainty, and the FPC loss to improve
consistency and robustness.

• We relabel 7,835 images using scribbles and construct
the first weakly supervised MD dataset based on point
annotations, which contains 17,993 images.

• We formulate the first point-supervised MD network that
efficiently detects mirror regions. By simply changing the
loss function, our method can seamlessly switch between
full supervision and scribble, point supervision, to some
extent achieving a unified framework.

• Extensive experiments on four benchmarks and three task
settings demonstrate that our method surpasses state-of-
the-art approaches. Our approach also shows promising
results on six related benchmarks.

II. RELATED WORK

A. Mirror Detection

Mirrors reflect physical entities and create completely iden-
tical imagings, which can seriously confuse and impact the
understanding and modeling of visual space. For the fully-
supervised setting, Yang et al. [8] proposed the first MD
method, called MirrorNet, which explores the correlation
between internal and external features of mirrors. Lin et al.
[7] introduced the PMDNet, which compares mirror features
with context for correspondence and incorporates edge in-
formation. Guan et al. [5] constructed semantic associations
among objects based on graph representation. The motivations
of these works are similar, i.e., establishing the associations
between entities and imagings. Huang et al. [11] built a
dual-stream network based on Transformer to explore the
symmetry property of mirrors. He et al. [10] presented the
HetNet, which explores low-level and high-level features in a
heterogeneous manner. Both aim to utilize rotation strategies to
construct mirror symmetry consistency. Some works [6], [9],
[16]–[20] leveraged the differences between mirror and non-
mirror regions to distinguish, i.e., depth, content distribution,
and frequency. For the data-efficient setting, Zha et al. [21]
constructed the first weakly supervised dataset and model
based on scribble annotations, i.e., S-Mirror and SMD, and
achieved performance comparable to fully supervised methods.
Lin et al. [22] designed a self-supervised pre-training strategy.
For the video-level setting, Lin et al. [23] proposed the first
video-level dataset and model, i,e, VMD. Warren et al. [24]
improved it based on inconsistent motion clues. Xu et al. [25]
focused on extremely-weak supervision.

Unlike the above works and salient object detection [26],
[27], our approach can effectively adapt to more benchmarks
and tasks settings, alleviating various issues without stacking
complex components or branches.

B. Visual Prompt Learning

With the development of LLMs [28], prompt learning has
been widely applied in AIGC [29], image enhancement [30],

and video understanding [31]. Liu et al. [12] introduced visual
prompts, generated from the high-frequency components of in-
puts, into low-level structure segmentation tasks. However, the
explicit prompt construction based on images may introduce
additional noise and lack semantic representations, making it
difficult to establish associations between entities and imagings
or capture mirror region contexts. Similarly, Luo et al. [32]
constructed 2D visual prompts based on mixed datasets and
applied to the COD task. But this significantly increases
the training cost and lacks generalizability. We have three
distinct differences. 1) We construct an efficient visual prompt
chain based on implicit learning to perceive spatial semantics,
achieving a many-to-one relationship where multiple semantic
prompts perceive an image, as opposed to EVP, where a
low-level prompt corresponds to one image. 2) We decouple
prompts into high- and low-frequency part to provide more
fine-grained guidance for features. Similarly, we also decouple
features based on the prediction maps to induce perceptual
differences in prompts. 3) Unlike directly acquiring frequency
from images, which makes it difficult to perceive content
dynamically, we leverage feature maps and prompts to interact
in mixed domains.

III. PROPOSED METHOD

A. Motivation and Overview

We aim to enable implicit prompt learning to perceive com-
plex spaces, dynamically equip experts based on contextual
variations, and achieve model customization at the image level.
The overview of our SVRNet is shown in Figure 2, which fol-
lows an encoder-decoder architecture and incorporates visual
prompts into the decoder. Given any input I ∈ R3×H0×W 0

,
we generate multi-scale features Xk ∈ RCk×Hk×Wk

and
progressively aggregate adjacent features to obtain Ak, where
Ck, Hk and W k denote k-th stage channels, height and
width, respectively. In the decoding stage, we generate content
weights based on Ak. We utilize the PPCR to generate
foreground and background prompt pools and then formulate
the mixed prompt chain p. The PE is designed for filtering
out harmful information and purifying prompts. The MPIE is
employed to dynamically inject prompts into decoder features,
i.e., Fk. The FPC and TEA losses are used to constrain the
model to learn more effectively. Through iterative refinement,
we can obtain high-quality outputs. We offer three settings to
meet diverse task needs.

B. Prototype-guided Prompt Chain Reasoning

Imagings and surrounding entities share similar attributes,
causing four challenges: 1) Establishing connections between
imagings and corresponding entities; 2) Discriminating be-
tween imagings and non-corresponding entities; 3) Failure
of association criteria when there are only partial or no
corresponding entities; 4) Confusion caused by similar textures
and reflective surfaces. Essentially, the goal is to construct
effective semantic perception. LLMs utilize chain-of-thought
(CoT) prompting to build logical connections and complex
reasoning between texts. Inspired by this, we propose the
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PPCR, forming a visual prompt chain that enables step-by-
step reasoning for scene perception and establishes semantic
connections between objects, thereby addressing the above
issues in a unified manner. Moreover, we utilize critical
representations of feature maps to generate pixel weights for
prompts, enabling dynamic perception and providing priors to
accelerate optimization. Random initialization can lead to op-
timization difficulties, so we use historical feature prototypes
as priors. The details of the PPCR are shown in Figure 3.

We apply masked average pooling separately on feature F̂
(output of the MPIE), foreground prediction map O, and back-
ground prediction map 1−O to obtain foreground prototypes
vf and background prototypes vb:

vf =

∑H,W
h=1,w=1 O

hw · F̂hw∑H,W
h=1,w=1 O

hw
,vb =

∑H,W
h=1,w=1(1−Oij) · F̂hw∑H,W

h=1,w=1 1−Ohw
,

(1)
where i, j represent the current pixel position indices and
(·) denotes element-wise multiplication. We then transfer
them into the foreground and background prototype banks
respectively, denoted as Mf ,Mb ∈ RNv×D, each containing
Nv prototypes vf , vb ∈ RD. In theory, the larger the bank, the
more references for representation, and the more the model
can benefit. Considering: 1) the balance between storage space
and training/inference cost; 2) representation redundancy, we
update the banks based on cosine similarity metrics to ensure
the size remains constant and the heterogeneity of elements.
Therefore, for Mf , the objective is to find the index j∗f
such that removing vj

f from the memory bank and adding
the new element vu minimizes the average cosine similarity
among all pairs of elements in the updated bank Mj

f =

(Mf \ {vj
f}) ∪ {vu}. We obtain j∗f by:

j∗f = argmin
j∈{1,2,...,Nv}

 1

Nv(Nv − 1)

∑
1≤i<k≤Nv

vi
fv

k
f

∥vi
f∥∥vk

f∥

∣∣∣∣
Mj

f

 ,

(2)
where ∥·∥ represents Euclidean norm. Similarly, we can obtain
the updated position j∗b of Mb. Note that when the prototype
bank is not full, elements can be added directly without using
the update mechanism.

We then initialize the prompt parameters p0 based on stan-
dard Gaussian distributions and generate the prompt pool by
progressive convolution, sharing the parameter space. Utilizing
historical knowledge to provide priors can accelerate learning.
The most direct approach to integrating hierarchical prototypes
into prompts pi is by aggregating all elements. However,
foreground and background prototypes exhibit distinctiveness,
incorporating into the same prompt may cause conflicts. We
first offer a suboptimal solution, i.e., randomly selecting and
introducing an indicator function δ where position i is 0 or 1
to ensure the prototypes are mutually exclusive.
pi := pi + δivf + (1− δi)vb,p

i+1 = F(pi),∀i ≥ 1, (3)
where F(·) denotes convolution. Heterogeneity in prompts
can be achieved within the current or few batches. With the
updating of input data, the lack of memory in the indicator
function may lead to forgetting previous allocation results,
thereby resulting in heterogeneous fusion. To address this

issue, we instead establish the hierarchical prompt pools
corresponding to the prototype banks. We further generate the
pixel weights of prompts to dynamically perceive content by:

Wk
c = Softmax(Proj(GAP(Ak))),Wk

s = F(σ(Ak)), (4)

where GAP,Proj denote global average pooling and linear
mapping, respectively. σ is sigmoid function. Wk

s ,W
k
c pro-

vide specific content guidance. When the number of prompts
Np exceeds the length of decoding stages Lf , one-to-one
correspondence cannot be achieved. Therefore, we employ the
hash allocation strategy:

pIp := F(W
Allocation(Ip,Lf )
s · pIp ·WAllocation(Ip,Lf )

c ),

Allocation(Ip, Lf ) =

{
Lf if Ip mod Lf = 0

Ip mod Lf otherwise
,

(5)
where Ip denote the index of prompts. We then randomly
select several prompts from the mirror and non-mirror prompt
pools to form the mixed prompt chain.

C. Prompt Evolution

We still encounter two problems with the prompt chain
generated by the PPCR. 1) Noise (error) propagation, where
noise is introduced at each step and transmitted to the next
step; 2) Critical features may decay or be overshadowed
by noise. Therefore, we propose the PE, which employs
spatial and channel gate mechanisms to filter out harmful
information and integrates all previous prompts to update the
current prompt, enhancing the correlation between prompts
and avoiding feature forgetting. The details of the PE are
shown in Figure 3.

Semantic is typically encoded in channels. When Ip = 1,
without any preceding prompts, we only leverage channel
shuffle on p1 to achieve symmetry consistency implicitly,
which is different from the explicit perception of SATNet
through rotating random angles. We can obtain refined p1 by:

p1 := F(Cat(Shuffle(p1),p1)), (6)
where Cat(·; ·) denotes channel concatenation.

When Ip > 1, we fuse previous Ip − 1 prompts. We have:
pIp := F(Cat(p1,p2, ...,pIp ,Shuffle(pIp))). (7)

For pIp , we filter out the noise in the spatial dimension by:

p
Ip
p1,p

Ip
p2 = Split(F(pIp)), pIp := p

Ip
p2 · F(p

Ip
p1). (8)

For channel gate, we apply shuffle and split into four groups
with different semantics. We then use the difference between
each original group’s features and the mean-filtered to obtain
the high-frequency components, aiming to filter out channel-
wise frequency domain noise. The process is:

p̂
Ip
g = Split(Shuffle(pIp))g − GAP(Split(Shuffle(pIp))g), (9)

pIp := F(Cat(p̂
Ip
1 , ..., p̂Ip

g )4g=1) + pIp . (10)

D. Mixture of Prompt Injection Expert

Different scenarios determine varying visual reasoning com-
plexities and pathways; thus, the injection strategy should be
tailored to the scenario. Therefore, we delegate this task to
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experts to choose the appropriate approach. Traditional MoE
maintains feature dimensions unchanged for routing and lin-
ear combination. Although this ensures information integrity,
the computational overhead contradicts our objectives. We
transition to the most informative low-rank space for expert
selection, achieving the balance between performance and ef-
ficiency. By increasing the number of experts, we can partition
subspaces more finely, but this may lead to homogeneity.
We thus dynamically adjust ranks and interaction modes to
expand expert diversity. In addition, corresponding to the
mixed prompt chain, we decompose prompts into high- and
low- pass, alternately integrating features with semantics and
focusing priors. When the number of prompts is greater than
the number of features, we employ the hash allocation strategy
in Eq 5. The details of the MPIE are shown in Figure 4.

Traditional image processing techniques, such as Fourier

transforms, are challenging to dynamically separate features
and are susceptible to sparse content deviations. We utilize
learnable high-pass and low-pass filters, and introduce a
DySparseκ selection operator to enhance the kernel elements
with more informative content, thereby generating high and
low-frequency prompts. The DySparseκ operator is:

DySparseκ(Att cj , tκ) =

{
Att cj if Att cj ≥ tκ

0 otherwise
, (11)

where tκ is the κ-th largest value in the cj-th column of Att.
The low- and high- frequency filters f l and fh are learned by:
fl = DySparseκ(Softmax(BN(F(GAP(p))))), fh = I− fl, (12)

where BN and I denote Batch Normalization and identity
matrix, respectively1. We apply fl, fh to each group g of p to

1For simplicity, we denote the prompts without indices in this section.
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Fig. 4. Structure of the MPIE. We decouple the prompts into high-pass and low-pass parts and leverage the MoE strategy to dynamically guide selection.
By equipping experts with varying ranks and interaction spaces, we expand the selection possibilities.

obtain low- and high- frequency components pl and ph:
pl := Cat(f1l p

1, ..., fgl p
g)4g, ph := Cat(f1hp

1, ..., fghp
g)4g. (13)

Injecting prompts into features through a single component
is the most straightforward approach, but it lacks diversity and
dynamism, failing to adjust the optimal strategy based on sce-
narios. An alternative solution is to cascade multiple compo-
nents, yet this introduces excessive computational complexity.
Therefore, we introduce MoE, assigning different types and
numbers of experts to perceive scene changes and generating
gate values through a routing network as the weights for linear
combinations of different experts. For the routing network
G(·), we refrain from excessive design, reducing it to a low-
rank dimension through GAP and feature mapping:

G(Fk) = Softmax(Proj(GAP(Fk)) + ϵ), (14)
where ϵ represents Gaussian noise for training. Preserving the
rank of features retains the maximum information content.
However, manually determining the optimal rank is hard, and
compressing the representation space into a single type lacks
diversity. Therefore, we apply dynamic low-rank decomposi-
tion aim at reducing the feature dimension C to different ranks
R (R < C) and ensuring the efficiency and heterogeneity of
the experts.
pl := FC→R

l (pl), ph := FC→R
h (ph), F

k := FC→R(Fk). (15)

Potential noise in the prompts leads to insufficient or sup-
pressed fine-grained representations (often in high uncertainty
regions). Features suffer from similar issues, thus uncertainty
estimation affects the fusion effect. We collect evidence from
prompts and features based on the subjective logic theory
[33], establishing connections on the Dirichlet distribution D.
Technically, for ∀i, j ∈ F, i.e.,{ph,pl,F

k}, category m, we
utilize Softplus to obtain the evidence map emi and compute
the belief masses bm

i , Dirichlet strength Si and uncertainty
map ui by:

bm
i =

emi
Si

, ui =
2

Si
and Si =

1∑
m=0

emi + 1. (16)

The belief masses of evidence may conflict. Therefore, we

quantify consistency cij of different evidences by:

cij =

1∑
m=0

bm
i · b1−m

j . (17)

We then fuse bm based on the Dempster-Shafer theory [34]:

bm =

∑
i,j∈F

∑
j ̸=i(b

m
i · uj) +

∑
i,j∈F b

m
i ·

∏
j ̸=i uj

1−
∑

i,j∈F
∑

j ̸=i cij
.

(18)
Thus we have fused uncertainty map U by:

U =

∏
i∈F ui

1−
∑

i,j∈F
∑

j ̸=i cij
. (19)

The foundation of MPIE lies in the experts E . Specifically,
we apply 1×1 convolution to pl, ph for dimension mapping,
followed by 3×3 convolution to encode local features, gener-
ating Kl and Kh. For Fk, we generate query, key, and value
through channel split, which is expressed as:
{Q,Qmask,K,Vself ,Vcross}k = Split(F(F(Fk))). (20)
Then we use Ok−1 to decouple feature maps and Uk−1 to

introduce uncertainty. For ∀k > 2, k%2 ̸= 0, we have:
Qk

mask := F(Qk
mask · (1−Ok−1)) + F(Qk

mask ·Uk−1).
(21)

Otherwise, we have:
Qk

mask := F(Qk
mask ·Ok−1) + F(Qk

mask ·Uk−1). (22)
Furthermore, we achieve interaction at three spaces, i.e.,

channel (C × C), spatial (H × W ), and frequency (F × F ).
Thus the correlation matrix cmph→f from Kh to Qk is :

cmph→f = Softmax(
Qk

maskKh

τph→f
) ∈ {RC×C ∨ RH×W ∨ RF×F },

(23)
where τph→f is a learnable scaling factor. To balance diversity
and complexity among Ne experts, we randomly select an
interaction space for each expert. Similarly, we can generate
Kl to Qk

mask pair cmpl→f , Qk
mask to Qk pair cmm→f and

Qk
mask to Kk pair cmf→f . We obtain the updated features

Fk of spatial or channel expert by:

Fk = F(FR→C(cmph→f ⊗Vk
cross ⊗ cmpl→f )

+ FR→C(cmf→f ⊗Vk
self ⊗ cmm→f )),

(24)
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where ⊗ is matrix multiplication. FR→C is used to restore
features from the low-rank dimension back to the original
dimension. Operations in the frequency space are similar. The
final output of MPIE is:

F̂k = Fk +

Ne∑
i=0

G(Fk) · E i(Fk,pl,ph). (25)

During the training phase, we leverage all expert knowledge.
In the testing phase, we select the top-k experts to ensure
efficiency. In Figure 10, we illustrate the performance and
efficiency variations for different numbers of experts.

E. Loss Function

The label of frequency prototype v is defined as y. The
similarity Sij between prototype vi and prototype vj is

vivj

τ∥vi∥∥vj∥ , where τ is a temperature coefficient. For Sij , the
condition for positive pairs is yi = yj where i ̸= j, forming
Pi and the condition for negative pairs is yi ̸= yj , forming
N i. For any batch containing N samples, we have:

LFPC = − 1

N

N∑
i=1

log(

∑
j∈Pi exp(Sij)∑N

j=1 exp(Sij)− exp(Sii)
)

− 1

N

N∑
i=1

log(1−
∑

j∈N i exp(Sij)∑N
j=1 exp(Sij)− exp(Sii)

).

(26)

The former loss is for positive pairs, and the latter is for
negative pairs. To quantify the fusion uncertainty, we first
generate the concentration parameter αm:

αm = (bm · S) + 1, α̂m = Ym + (1− Ym)αm, (27)

where Ym represent GT for class-m. We use Kullback-Leibler
(KL) divergence to keep evidence for the negative label as 0.
We have fused strength S = 2

U . We then formulate the LTEA:

LTEA =

Lf∑
l=1

1∑
m=0

Ym(Γ(S)− Γ(αm)) + KL[D(O|α̂m)∥D(O|1)],

(28)

where Γ(·) represent the digamma function. We apply supervi-
sion to the prediction O for all stages. For the fully-supervised
setting, we employ intersection over union loss (LIoU), thus
we formulate LFully by:

LFully =

Lf∑
l=1

LTEA + LIoU + λLFPC. (29)

Point supervision can be regarded as a special case of
scribble supervision. Therefore, for the weakly-supervised
setting, we utilize partial TEA loss (Lp

TEA) and smooth loss
(LS), thus we formulate Lweakly by:

LWeakly =

Lf∑
l=1

Lp
TEA + LS + λLFPC, (30)

where we empirically set λ = 0.1. Note that we do not
leverage edge loss like [21] as additional supervision.
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Fig. 5. Percentage of labeled pixels on four mirror datasets. From left to
right: MSD, PMD, Mirror-RGBD, and VMD.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

1) Datasets for Fully-Supervised. MSD [8] and PMD [7]
datasets contain 3,063 and 5,096 training images, 955 and
571 testing images, respectively. Mirror-RGBD [6] contains
2,000 training images and 1,049 testing images, accompanied
by depth maps. VMD [23] has 143 (7,835 images) and 126
(7,152 images) videos for training and testing. We shuffle all
video frames to avoid introducing temporal information. To
validate the generalization, we further conduct experiments in
six related benchmarks, i.e., GDD [63], [64] (glass), ISTD [65]
(shadow), DUTS [66] (salience), COD10K [67] (camouflage),
MAS3K [68] (underwater), ORSI4199 [69] (remote sensing).

2) Datasets for Weakly-Supervised. Based on S-Mirror [21],
we relabel the training images of VMD with scribble. As
shown in Figure 5, the majority of the annotation ratios are
below 0.01, with a comparable ratio between foreground and
background. We further relabel the training images of MSD,
PMD, Mirror-RGBD, and VMD via point.

3) Evaluation Metrics. Follow [17], [21], we compute five
evaluation metrics, i.e., S-measure (Sm), mean E-measure
(Em), weighted F-measure (Fw

β ), intersection over union
(IoU), and Mean Absolute Error (MAE). The higher the better
for the first four. For fair comparison, we utilize the provided
prediction results (or pretrained model weights), or retrain
using the official codes.

4) Annotation strategy. For scribble annotation, our labeling
process is divided into two steps: initial labeling and cal-
ibration. We first collect training images of MSD dataset,
which mainly contains indoor scenes and is easy to find
mirror regions, taking about 5s to label an image. Similarly,
we label the training images of the PMD dataset, which
is collected from six public datasets with a wide range of
scenes, leading to interference during the labeling process and
prolonging the time, which is about 9s for an image. Mirror-
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TABLE I
QUANTITATIVE COMPARISON ON FOUR MIRROR DATASETS. S, M, C, U, O, WS, WP, ATT. D., AND V. REPRESENT SOD, MD, COD, UNIFIED

SEGMENTATION, OTHER BINARY SEGMENTATION, WEAKLY SUPERVISED (SCRIBBLE), WEAKLY SUPERVISED (POINT), ATTRIBUTION, DEPTH, AND VIDEO,
RESPECTIVELY. THE BEST PERFORMANCES ARE BOLDED AND THE SECOND ARE UNDERLINED. †: THE COMPARATIVE RESULTS OF OUR METHOD ARE

REPORTED AS THE AVERAGE OVER MULTIPLE RANDOM SEEDS.

Methods Att. D. V. MSD PMD Mirror-RGBD VMD
MAE↓ Sm↑ Em↑ Fw

β ↑ IoU↑ MAE↓ Sm↑ Em↑ Fw
β ↑ IoU↑ MAE↓ Sm↑ Em↑ Fw

β ↑ IoU↑ MAE↓ Sm↑ Em↑ Fw
β ↑ IoU↑

CNN-based Fully-Supervised Setting

MINet [35] CVPR’20 S ✗ ✗ 0.088 0.792 0.819 0.715 0.664 0.038 0.794 0.822 0.667 0.601 0.063 0.803 0.866 0.746 0.695 0.148 0.628 0.660 0.485 0.459
LDF [36] CVPR’20 S ✗ ✗ 0.068 0.821 0.867 0.773 0.729 0.038 0.799 0.833 0.683 0.633 0.060 0.805 0.870 0.744 0.698 0.146 0.645 0.682 0.523 0.475

MENet [37] CVPR’23 S ✗ ✗ 0.054 0.868 0.906 0.829 0.805 0.033 0.826 0.873 0.727 0.680 0.052 0.811 0.868 0.784 0.722 0.133 0.703 0.709 0.589 0.510
MirrorNet [8] ICCV’19 M ✗ ✗ 0.065 0.850 0.891 0.812 0.790 0.043 0.761 0.841 0.663 0.585 0.055 0.786 0.819 0.760 0.695 0.145 0.675 0.750 0.564 0.505
PMDNet [7] CVPR’20 M ✗ ✗ 0.047 0.875 0.908 0.845 0.815 0.032 0.810 0.859 0.716 0.660 0.050 0.826 0.873 0.791 0.731 0.128 0.709 0.732 0.601 0.532
SANet [5] CVPR’22 M ✗ ✗ 0.054 0.862 0.898 0.829 0.798 0.071 0.808 0.839 0.721 0.668 0.048 0.834 0.887 0.800 0.750 0.132 0.724 0.744 0.599 0.518

VCNet [16] TPAMI’22 M ✗ ✗ 0.044 ‡ ‡ ‡ 0.854 0.028 ‡ ‡ ‡ 0.694 0.052 ‡ ‡ ‡ 0.730 0.123 0.716 0.740 0.606 0.539
HetNet [10] AAAI’23 M ✗ ✗ 0.043 0.881 0.921 0.854 0.824 0.029 0.828 0.865 0.734 0.690 0.048 0.840 0.892 0.805 0.751 0.118 0.730 0.739 0.610 0.544
GateNet [38] IJCV’24 U ✗ ✗ 0.053 0.872 0.907 0.829 0.811 0.048 0.785 0.829 0.649 0.621 0.059 0.795 0. 0.769 0.711 0.153 0.653 0.683 0.496 0.429
PDNet [6] CVPR’21 M ✓ ✗ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ 0.042 0.856 0.906 0.825 0.778 ‡ ‡ ‡ ‡ ‡

PopNet [39] ICCV’23 C ✓ ✗ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ 0.039 0.847 0.915 0.835 0.780 ‡ ‡ ‡ ‡ ‡
VMDNet [23] CVPR’23 M ✗ ✓ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ 0.105 0.731 0.742 0.623 0.567
MGVMD [24] CVPR’24 M ✗ ✓ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ 0.100 0.742 0.756 0.639 0.591
VGSDNet [40] AAAI’24 O ✗ ✓ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ 0.102 0.740 0.748 0.633 0.589

Transformer-based Fully-Supervised Setting

SETR [41] CVPR’21 S ✗ ✗ 0.071 0.797 0.840 0.750 0.690 0.035 0.753 0.775 0.633 0.564 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡
VST [42] ICCV’21 S ✗ ✗ 0.054 0.861 0.901 0.818 0.791 0.036 0.783 0.814 0.639 0.591 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡

FSPNet [43] CVPR’23 C ✗ ✗ 0.057 0.871 0.897 0.818 0.807 0.065 0.743 0.752 0.513 0.530 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡
FPNet [44] MM’23 C ✗ ✗ 0.042 0.883 0.917 0.849 0.827 0.033 0.823 0.874 0.717 0.673 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡

VSCode [32] CVPR’24 C ✗ ✗ 0.077 0.800 0.820 0.721 0.687 0.042 0.787 0.816 0.656 0.607 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡
Mask2Former [45] CVPR’22 U ✗ ✗ 0.065 0.826 0.850 0.760 0.736 0.042 0.802 0.836 0.697 0.650 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡

SAM [46] ICCV’23 U ✗ ✗ 0.124 ‡ ‡ ‡ 0.515 0.052 ‡ ‡ ‡ 0.647 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡
EVP [12] CVPR’23 U ✗ ✗ 0.064 0.845 0.896 0.811 0.780 0.037 0.793 0.861 0.694 0.634 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡

Spider [15] ICML’24 U ✗ ✗ 0.041 0.898 0.932 0.871 0.856 0.028 0.847 0.889 0.750 0.717 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡
DualSAM [13] CVPR’24 O ✗ ✗ 0.039 0.903 0.932 0.882 0.848 0.034 0.816 0.839 0.705 0.636 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡

GhostingNet [47] TPAMI’24 O ✗ ✗ 0.064 0.863 0.897 0.830 0.811 0.038 0.802 0.856 0.685 0.642 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡
SATNet [11] AAAI’23 M ✗ ✗ 0.033 0.887 0.916 0.865 0.834 0.025 0.826 0.858 0.739 0.684 0.034 0.857 0.900 0.829 0.772 0.101 0.728 0.763 0.653 0.609

CSFwinformer [9] TIP’24 M ✗ ✗ 0.045 0.875 0.905 0.846 0.821 0.024 0.831 0.864 0.756 0.700 0.031 0.864 0.908 0.836 0.786 0.102 0.738 0.755 0.642 0.600
DPRNet [17] TCSVT’24 M ✗ ✗ 0.033 0.904 0.934 0.888 0.866 0.026 0.844 0.894 0.766 0.721 0.047 0.845 0.899 0.811 0.761 0.100 0.749 0.777 0.675 0.628
PICRNet [48] MM’23 S ✓ ✗ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ 0.053 0.815 0.877 0.772 0.718 ‡ ‡ ‡ ‡ ‡
XMSNet [49] MM’23 S ✓ ✗ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ 0.033 0.872 0.909 0.840 0.775 ‡ ‡ ‡ ‡ ‡
CPNet [50] IJCV’24 S ✓ ✗ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ 0.035 0.870 0.913 0.844 0.788 ‡ ‡ ‡ ‡ ‡

SLTNet [51] CVPR’22 C ✗ ✓ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ 0.102 0.766 0.783 0.669 0.652
S2Net [52] CVPR’23 O ✗ ✓ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ 0.098 0.755 0.778 0.672 0.646

SLANet [53] ICME’24 M ✗ ✓ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ 0.099 ‡ ‡ ‡ 0.634
TBGDiff [54] MM’24 U ✗ ✓ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ 0.096 0.763 0.795 0.689 0.655

Ours† M ✗ ✗ 0.026 0.924 0.955 0.919 0.897 0.022 0.868 0.917 0.803 0.763 0.034 0.867 0.920 0.841 0.798 0.097 0.778 0.817 0.707 0.664

Weakly-Supervised Setting

SS [55] CVPR’20 WS ✗ ✗ 0.158 0.681 0.747 0.567 0.527 0.055 0.726 0.790 0.571 0.513 0.127 0.654 0.722 0.537 0.444 0.199 0.636 0.668 0.487 0.458
SCWS [56] AAAI’21 WS ✗ ✗ 0.121 0.770 0.814 0.678 0.659 0.059 0.759 0.807 0.599 0.579 0.118 0.690 0.743 0.547 0.498 0.189 0.644 0.684 0.498 0.465
TEL-S [57] CVPR’22 WS ✗ ✗ 0.113 0.790 0.828 0.726 0.702 0.065 0.746 0.791 0.559 0.563 0.100 0.733 0.785 0.615 0.576 0.184 0.631 0.685 0.480 0.440
SAM-S [46] ICCV’23 WS ✗ ✗ 0.124 0.766 0.809 0.686 0.663 0.083 0.720 0.759 0.496 0.537 0.110 0.716 0.756 0.577 0.545 0.195 0.628 0.666 0.468 0.432
SCOD [58] AAAI’23 WS ✗ ✗ 0.092 0.786 0.851 0.728 0.685 0.055 0.764 0.819 0.609 0.586 0.106 0.698 0.762 0.581 0.518 0.180 0.645 0.685 0.500 0.460
SMD [21] AAAI’24 WS ✗ ✗ 0.078 0.828 0.878 0.780 0.750 0.051 0.773 0.824 0.630 0.600 0.088 0.754 0.806 0.655 0.616 0.160 0.664 0.711 0.525 0.479

Ours-S† WS ✗ ✗ 0.063 0.845 0.891 0.802 0.783 0.047 0.780 0.838 0.646 0.595 0.075 0.776 0.831 0.688 0.649 0.150 0.686 0.725 0.547 0.511
SS-P [55] CVPR’20 WP ✗ ✗ 0.248 0.610 0.628 0.472 0.457 0.143 0.636 0.660 0.390 0.405 0.187 0.566 0.627 0.350 0.339 0.207 0.586 0.650 0.424 0.380

SCWS-P [56] AAAI’21 WP ✗ ✗ 0.211 0.613 0.696 0.492 0.460 0.118 0.666 0.701 0.458 0.441 0.161 0.622 0.656 0.432 0.399 0.195 0.604 0.648 0.441 0.394
TEL-P [57] CVPR’22 WP ✗ ✗ 0.196 0.650 0.710 0.530 0.502 0.123 0.670 0.702 0.474 0.448 0.190 0.588 0.607 0.387 0.366 0.191 0.611 0.678 0.466 0.410
SAM-P [46] ICCV’23 WP ✗ ✗ 0.220 0.635 0.674 0.513 0.491 0.137 0.637 0.664 0.414 0.398 0.181 0.583 0.631 0.368 0.350 0.210 0.586 0.660 0.434 0.385

SCOD-P [58] AAAI’23 WP ✗ ✗ 0.183 0.687 0.720 0.573 0.553 0.109 0.687 0.733 0.513 0.476 0.145 0.650 0.688 0.479 0.443 0.184 0.614 0.684 0.469 0.418
SMD-P [21] AAAI’24 WP ✗ ✗ 0.168 0.696 0.742 0.586 0.560 0.091 0.706 0.760 0.550 0.501 0.135 0.670 0.713 0.516 0.465 0.175 0.621 0.690 0.473 0.416

Ours-P† WP ✗ ✗ 0.143 0.727 0.771 0.622 0.599 0.080 0.720 0.779 0.573 0.519 0.121 0.692 0.750 0.544 0.501 0.166 0.660 0.698 0.509 0.473

RGBD dataset contains 202 scenes, which contain many high-
resolution images and interfering objects, thus taking about
8s to label an image. Due to the clear similarities between
frames, the annotations within the same segment in the VMD
dataset have shorter durations compared to those between dif-
ferent segments. During the annotation process, we follow the
guideline of simplicity and accuracy, using few scribbles and
accurately labeling the foregrounds and backgrounds. After
completing the initial labeling, we double-check to ensure that
we do not miss any mirror region and there are no mislabeling
and complex scribbles. For point annotation, we employ the
same strategy. The main difference is that scribble annotation
takes two to three times longer than point annotation.

B. Implementation Details

We implement our model via PyTorch and conduct all ex-
periments on NVIDIA A100 GPUs. Following [7], [15], [21],
[37], [63], [70], for mirror, glass, camouflage, and salience
datasets, inputs are resized to 384×384 for fair comparison.
Following [13], [71], for shadow, underwater datasets, inputs
are resized to 512×512. Following [72], 352×352 is applied for

the remote sensing dataset. For training, we use the AdamW
as our optimizer to update the model parameters, with 200
epochs, a batch size of 40, and an initial learning rate of
1e-4. To prevent overfitting, we employ data augmentation,
e.g., random rotation. For testing, we compute generated
predictions without adopting any post-processing operations.

Unless otherwise specified, we adopt the following optimal
hyper-parameter settings, determined based on the quantitative
ablation studies. The number of visual prototypes is set to
Nv = 10, balancing prototype quality and computational
efficiency. The number of visual prompts is fixed to Np = 4,
beyond which performance saturates due to redundancy. For
frequency prototype contrastive learning, the sparsity ratio of
frequency decomposition is set to κ = 85%, which achieves
the best trade-off between informative components and noise
suppression. In the mixture of prompt injection expert module,
we set the number of candidate experts to Ne = 6, and
activate Nae = 4 experts dynamically for each sample. For
low-rank prompt injection, heterogeneous ranks are assigned
across experts using an exponential allocation strategy, with
the best-performing rank combination being 16/64.
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TABLE II
QUANTITATIVE ABLATION OF CRUCIAL COMPONENTS AND BACKBONES OF OUR SVRNET. C1, C2, C3, C4, AND C5 INDICATE THE PPCR, PE, MPIE,

FPC LOSS, AND TEA LOSS, RESPECTIVELY. B1, B2, B3, B4, B5 REPRESENT PVT-V2B2 [59], SWIN-B [60], SWIN-S [60], RESNETXT101 [61],
RESNET50 [62], RESPECTIVELY. PPCR IS THE FOUNDATION FOR OTHER COMPONENTS, IMPLYING THAT THEY CANNOT WORK WITHOUT THE PPCR.
THE FIRST LINE IS THE Baseline MODEL. WHEN THE MPIE IS NOT AVAILABLE, WE UTILIZE CHANNEL CONCATENATION AS AN ALTERNATIVE. #: ALL

ABLATION RESULTS OF OUR METHOD ARE COMPUTED USING A SINGLE RANDOM SEED.

Method Backbone Component MSD PMD

B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 MAE↓ Sm↑ Em↑ Fw
β ↑ IoU↑ MAE↓ Sm↑ Em↑ Fw

β ↑ IoU↑

I ✓ 0.047 0.872 0.884 0.843 0.808 0.033 0.798 0.852 0.726 0.675
II ✓ ✓ 0.040 0.888 0.907 0.874 0.839 0.029 0.820 0.874 0.743 0.695
III ✓ ✓ ✓ 0.032 0.907 0.930 0.893 0.864 0.026 0.839 0.890 0.761 0.725
IV ✓ ✓ ✓ 0.035 0.895 0.924 0.882 0.852 0.026 0.832 0.885 0.764 0.718
V ✓ ✓ ✓ ✓ 0.028 0.911 0.945 0.913 0.888 0.024 0.858 0.905 0.788 0.747
VI ✓ ✓ ✓ ✓ ✓ 0.025 0.923 0.953 0.920 0.896 0.023 0.865 0.914 0.800 0.759
VII# ✓ ✓ ✓ ✓ ✓ ✓ 0.024 0.926 0.959 0.922 0.902 0.022 0.872 0.922 0.810 0.770

VIII ✓ ✓ ✓ ✓ ✓ ✓ 0.025 0.930 0.955 0.927 0.895 0.020 0.865 0.927 0.814 0.765
IX ✓ ✓ ✓ ✓ ✓ ✓ 0.026 0.924 0.952 0.929 0.899 0.020 0.873 0.918 0.807 0.773
X ✓ ✓ ✓ ✓ ✓ ✓ 0.034 0.902 0.943 0.891 0.876 0.025 0.844 0.891 0.770 0.735
XI ✓ ✓ ✓ ✓ ✓ ✓ 0.032 0.897 0.932 0.880 0.870 0.027 0.839 0.884 0.762 0.728

TABLE III
QUANTITATIVE RESULTS UNDER LOW-LIGHT AND OVEREXPOSURE

CONDITIONS ON THE MSD DATASET.

Methods MSD (Low Light) MSD (Overexposure)
MAE↓ Sm↑ Em↑ Fw

β ↑ IoU↑ MAE↓ Sm↑ Em↑ Fw
β ↑ IoU↑

Ours 0.035 0.903 0.941 0.893 0.869 0.041 0.892 0.930 0.871 0.850

TABLE IV
QUANTITATIVE COMPARISON ON COMPUTATION AND MODEL

COMPLEXITY. WE COMPARE WITH FOUR MD MODELS ON PARAMETERS
(M), FLOPS (GMAC), AND FRAMES PER SECOND (FPS).

Methods Input Size Backbone FLOPs↓ Params.↓ FPS↑

PMDNet 384×384 ResNeXt101 101.54 147.66 14.2
SATNet 512×512 Swin-S 153.00 139.36 11.7
CSFwinformer 512×512 Swin-B 139.45 150.54 12.3
DPRNet 384×384 PVT-v2 30.47 31.19 22.8

Ours-R101 384×384 ResNeXt101 39.58 45.25 19.3
Ours-S 384×384 Swin-S 31.49 51.73 17.6
Ours-B 384×384 Swin-B 48.60 89.80 14.7
Ours-P 384×384 PVT-v2 15.15 27.24 24.4

C. Comparison on MD benchmarks

We consider both fully supervised and weakly supervised
settings, different backbone networks, and select various BS
and SS methods for comparisons.

1) Quantitative Comparison. As shown in Table I, for the
fully-supervised settings, our method surpasses the second best
by 0.7%, 2.0%, 2.1%, 3.1%, 3.1% and 0.2%, 2.4%, 2.3%,
3.7%, 4.2% on the MSD and PMD benchmarks, respectively.
Represented by DualSAM, based on the vision foundation
model i.e., SAM, theoretically leveraging strong pre-training
priors and parameter fine-tuning should yield promising re-
sults. However, it fails to achieve performance comparable to
MD-specific models in practice. We attribute it to insufficient
modeling of reflection perception and biases towards entities.
In other words, its inability to effectively discriminate between
mirror and entity disparities. Compared to EVP, VSCode,
and Spider, which are also based on visual prompts, our
method’s advantage is evident, demonstrating that implicitly
learning semantic prompts and constructing prompt chains for

visual reasoning is superior to explicitly utilizing independent
prompts. In addition, the inclusion of MoRE further enhances
scene change perception. Unlike FPNet, CSFwinformer, and
DPRNet, which consider foreground-background differences
from features perspective, our method has two main distinc-
tions. 1) Motivation, we decouple prompts into high- and
low-frequency to provide finer-grained references for features;
2) Technically, we design more optimal content-based kernel
decomposition component instead of using traditional image
transforms, as elaborated in Table VI.

Without the assistance of depth maps and temporal signals,
our method still outperforms the (second) best by -0.3%, -
0.5%, 0.7%, -0.3%, 1.0% and -0.1%, 1.5%, 2.2%, 1.8%, 0.9%
on the Mirror-RGBD and VMD benchmarks, respectively.
Depth differences can preliminarily locate mirror regions. Our
SVRNet, despite not utilizing depth maps, surpasses MD- and
depth-specific model i.e., PDNet, SOD- and RGBX-specific
model i.e., XMSNet, indicating that efficient visual reasoning
can avoid complex prior fusion and achieve better local-
ization effects to some extent. Our method processes video
frames independently but achieves performance comparable
to TBGDiff, which fuses a text-to-image diffusion model and
sequence signals, showing the additional scalability potential.

In the scribble-supervised setting, our method surpasses the
second best by an average of 1.1%, 1.7%, 1.7%, 2.3%, and
2.3% on four benchmarks, respectively. Similarly, in the point-
supervised setting, the improvements are 1.5%, 2.7%, 2.3%,
3.1%, and 3.8%, indicating that the proposed components are
not limited to fully supervised settings.

In Table III, under the degraded settings, our method still
performs comparably to the SOTA MD method, i.e., DPRNet.

2) Qualitative Comparison. As shown in Figure 6, the first
two rows represent imagings with and without corresponding
entities. The third and fourth rows demonstrate regular and
irregular occlusions. Our approach establishes associations
between entities and imagings as well as the context around
imagings. The fifth and sixth rows show scale variations and
multiple targets. Our method can enable global modeling to
avoid false negatives. The last two rows demonstrate scenes
with mirrors and tile (or glass). Our approach perceives
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Image MENet MirrorNet PMDNet HetNet VST FSPNet VScode EVP SATNet Ours GTDualSAM CSFwinformer

Fig. 6. Qualitative comparison on the mirror scenes under fully supervised.

Image SCWS SAM-S SCOD SMD Ours GT

Fig. 7. Qualitative comparison on the mirror scenes under weak supervision.

semantic differences, mitigating false positives. In Figure 7,
despite using scribble as supervision, our approach allows
achieving detection results close to the GT. In Figure 8, we
evaluate co-occurrence scenarios involving mirrors and other
easily confusable smooth surfaces such as screens, glass, and
tiles. In Figure 9, we further evaluate two types of corruption,
i.e., low-light and overexposure, to simulate the impact of
indoor lighting variations on mirror perception.

3) Why can SVRNet work in the fully- and weakly- super-
vised settings? The several components we proposed exhibit
promising robustness under various loss function supervisions;
in other words, the perception of mirror regions is universal.

Image

Ours

GT

(a) (b) (c) (d) (e)

Fig. 8. Qualitative results illustrating varying levels of co-occurrence and
scene interference. (a) Computer monitor; (b) Tile with general reflection; (c)
Highly reflective tile; (d) Indoor scene with both glass and tile; (e) Outdoor
scene with glass.

4) Why can SVRNet work in the video setting? Apart from
the effective processing of individual frames by our compo-
nents, the FPC loss can establish inter-frame associations to
some extent, capturing temporal information.

D. Ablation Study

We validate the effect of the proposed components, critical
hyperparameters on the MSD and PMD datasets.
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TABLE V
QUANTITATIVE ABLATION ON THE COMPONENTS OF THE PPCR AND THE PE.

Model Choice Prototype Weight MSD PMD

CoT Single Foreground Background All Half Spatial Channel MAE↓ Sm↑ Em↑ Fw
β ↑ IoU↑ MAE↓ Sm↑ Em↑ Fw

β ↑ IoU↑

I ✓ ✓ 0.028 0.900 0.928 0.895 0.864 0.028 0.837 0.888 0.763 0.735
II ✓ ✓ 0.027 0.911 0.940 0.907 0.877 0.026 0.851 0.903 0.779 0.750
III ✓ ✓ ✓ ✓ 0.026 0.917 0.939 0.915 0.889 0.025 0.849 0.910 0.786 0.755
IV ✓ ✓ ✓ ✓ 0.027 0.914 0.940 0.913 0.884 0.026 0.847 0.907 0.790 0.759
V ✓ ✓ ✓ ✓ ✓ 0.029 0.908 0.933 0.905 0.879 0.027 0.839 0.901 0.781 0.751
VI ✓ ✓ ✓ ✓ ✓ 0.026 0.922 0.949 0.921 0.896 0.024 0.856 0.916 0.798 0.768
VII ✓ ✓ ✓ ✓ ✓ 0.025 0.920 0.953 0.917 0.898 0.024 0.859 0.912 0.803 0.765
VIII ✓ ✓ ✓ ✓ ✓ ✓ 0.024 0.926 0.959 0.922 0.902 0.022 0.872 0.922 0.810 0.770

Model Gate. Choice Choice MSD PMD

Spatial Channel Cascade Residual Dense Shuffle All Group MAE↓ Sm↑ Em↑ Fw
β ↑ IoU↑ MAE↓ Sm↑ Em↑ Fw

β ↑ IoU↑

IX ✓ ✓ 0.026 0.905 0.945 0.904 0.886 0.025 0.846 0.892 0.785 0.742
X ✓ ✓ 0.027 0.908 0.943 0.909 0.884 0.024 0.848 0.894 0.787 0.737
XI ✓ ✓ ✓ 0.027 0.913 0.947 0.914 0.888 0.025 0.854 0.898 0.792 0.749
XII ✓ ✓ ✓ 0.025 0.920 0.953 0.920 0.895 0.023 0.859 0.908 0.798 0.756
XIII ✓ ✓ ✓ 0.025 0.922 0.955 0.922 0.900 0.022 0.862 0.912 0.799 0.762
XIV ✓ ✓ ✓ ✓ 0.024 0.925 0.957 0.928 0.900 0.022 0.866 0.915 0.803 0.763
XV ✓ ✓ ✓ ✓ 0.024 0.926 0.959 0.922 0.902 0.022 0.872 0.922 0.810 0.770

TABLE VI
QUANTITATIVE ABLATION ON THE COMPONENTS OF THE MPIE.

Model Choice Connection Expert MSD PMD

MoE Fixed Add Multiply Attention Ours Spatial Channel Frequency MAE↓ Sm↑ Em↑ Fw
β ↑ IoU↑ MAE↓ Sm↑ Em↑ Fw

β ↑ IoU↑

I ✓ ✓ 0.026 0.893 0.930 0.893 0.882 0.028 0.826 0.882 0.780 0.730
II ✓ ✓ 0.027 0.907 0.941 0.905 0.892 0.027 0.836 0.891 0.789 0.744
III ✓ ✓ 0.027 0.909 0.938 0.903 0.889 0.026 0.838 0.895 0.786 0.740
IV ✓ ✓ 0.026 0.915 0.944 0.905 0.894 0.026 0.846 0.901 0.791 0.747
V ✓ ✓ ✓ 0.026 0.919 0.948 0.912 0.895 0.025 0.850 0.905 0.791 0.750
VI ✓ ✓ ✓ 0.024 0.917 0.950 0.908 0.898 0.025 0.848 0.908 0.793 0.746
VII ✓ ✓ ✓ 0.026 0.913 0.943 0.908 0.892 0.026 0.852 0.902 0.795 0.749
VIII ✓ ✓ ✓ ✓ 0.024 0.924 0.955 0.919 0.900 0.023 0.856 0.911 0.795 0.757
IX ✓ ✓ ✓ ✓ 0.025 0.920 0.951 0.921 0.897 0.023 0.859 0.909 0.797 0.753
X ✓ ✓ ✓ ✓ 0.025 0.923 0.950 0.917 0.902 0.022 0.863 0.908 0.801 0.758
XI ✓ ✓ ✓ ✓ ✓ 0.024 0.926 0.959 0.922 0.902 0.022 0.872 0.922 0.810 0.770

Model Choice Space Guidance MSD PMD

Sparse Full Fourier Wavelet Laplace Ours Same Alter Uncertainty MAE↓ Sm↑ Em↑ Fw
β ↑ IoU↑ MAE↓ Sm↑ Em↑ Fw

β ↑ IoU↑

XII ✓ 0.026 0.911 0.947 0.907 0.899 0.024 0.858 0.899 0.795 0.759
XIII ✓ 0.027 0.918 0.951 0.910 0.896 0.027 0.864 0.905 0.797 0.755
XIV ✓ 0.026 0.914 0.958 0.912 0.890 0.025 0.861 0.903 0.801 0.761
XV ✓ ✓ 0.026 0.917 0.952 0.916 0.895 0.024 0.866 0.908 0.799 0.758
XVI ✓ ✓ 0.025 0.915 0.955 0.919 0.897 0.024 0.868 0.911 0.795 0.762
XVII ✓ ✓ ✓ 0.025 0.920 0.957 0.915 0.897 0.024 0.867 0.910 0.802 0.762
XVIII ✓ ✓ ✓ 0.025 0.923 0.955 0.918 0.898 0.023 0.865 0.914 0.804 0.765
XIX ✓ ✓ ✓ ✓ 0.024 0.926 0.959 0.922 0.902 0.022 0.872 0.922 0.810 0.770

Low Light
Prediction

Overexposure
Prediction

Normal
Prediction

Original 
Image

GTLow Light
Image

Overexposure
Image

Fig. 9. Qualitative results under low light and overexposure conditions.

1) Effect of the crucial components. As shown in Table II,
comparing Models I and II, directly incorporating the PPCR
leads to an overall performance improvement of approximately
2%. Combining the PE to filter out noise in prompts and
enhance coupling doubles this improvement. However, when
combined with MPIE, although it enhances the injection strat-
egy, the improvement is not as significant as when combined
with PE. Additionally, the fusion of PE and MPIE results in
better performance than using either one alone, indicating their
complementary characteristics. In other words, high-quality
prompts are fundamental as they enable better understanding

of the semantic and structural aspects of input scenarios, while
better injection methods can expand the model’s representa-
tional boundaries. Furthermore, we enhance the model’s focus
on high uncertainty samples and regions by employing the
TEA loss, facilitating the generation of reliable predictions.
The FPC loss further enhances the performance, validating its
effect in establishing universal representations across images.
In Figure 12, as each component is introduced, issues such as
reflective interference, size variations, only imagings with no
corresponding entities or partial correspondence, and irregular
regions are gradually alleviated. And the mirror region transi-
tions from high uncertainty to low uncertainty. We observe that
Ucer. III shows high uncertainty towards non-mirror regions,
leading us to infer that the model in this stage pays more
attention to the background regions under the guidance of the
background mask.

2) Effect of backbone network and model analysis. As shown
in Table II and Table IV, we use input size of 384×384
and employ three Transformer-based models, i.e., PVT-v2,
Swin-S, Swin-B, and CNN-based model, ResNeXt101 as
backbone networks. The computational and model complexity
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Fig. 10. Quantitative ablation on the number of prototypes v, prompts p, sparsity of frequency decomposition, the number of experts n and activated experts
k, the minimum and maximum rank combination, and the corresponding computation and model complexity.

TABLE VII
QUANTITATIVE ABLATION ON RANK R.

Model Range Space MSD

Min Max All Random Linear Exponential MAE↓ Sm↑ Em↑ Fw
β ↑ IoU↑

I ✓ ✓ 0.030 0.883 0.900 0.873 0.866
II ✓ ✓ 0.023 0.930 0.950 0.928 0.909
III ✓ ✓ ✓ 0.026 0.917 0.947 0.902 0.891
IV ✓ ✓ ✓ 0.027 0.919 0.944 0.909 0.893
V ✓ ✓ ✓ 0.024 0.926 0.959 0.922 0.902

of SVRNet based on PVT-v2 are smaller than the other four
versions, while achieving superior performance and delivering
faster FPS. On the MSD dataset, using Swin-S and Swin-B as
backbones, our method surpasses SATNet and CSFwinformer
by 0.7%, 3.7%, 3.6%, 6.4%, 6.5%, and 1.0%, 5.5%, 5.0%,
8.1%, 7.4% across five metrics. When utilizing ResNext101,
we outperform PMDNet by 1.3%, 2.7%, 3.5%, 4.6%, and
6.1%. With PVT-v2 as the backbone, our method surpasses
DPRNet by 0.9%, 2.2%, 2.5%, 3.4%, and 3.6%. Despite the
introduction of several components, particularly the MPIE
based on the MoE architecture, our approach maintains high
performance and efficiency.

3) Effect of components of the PPCR. As shown in Table V,
the performance gap between Models I and II is significant.
We analyze that this difference may be due to the fact that
independent prompts can only convey limited information,
making it difficult to cover complex contexts and susceptible
to variations in input. In contrast, the CoT format can pro-
gressively reason through perceiving complex visual spaces,
and by adjusting the content and quantity of prompts, it can
exhibit better robustness and adaptability to different scenarios.

In Figure 13, we can transition from the cluttered attention
space to the focused one by utilizing a chain consisting of
only three prompts. Compared to Models III-VI, using either
the foreground or background prototype alone to provide
priors for prompts is not as effective as combining the two.
The foreground-background prototypes can enhance the rep-
resentations of mirror regions while suppressing interference
from non-mirror regions. However, integrating both prototypes
into the same prompt is less effective than using the single
prototype, as our analysis suggests prototype conflicts leading
to information decay. Therefore, we achieve optimal results by
inclusively incorporating the prototypes into different prompt
pools. According to Models VI-VIII, the spatial and channel
weights of features are complementary.

4) Effect of components of the PE. As shown in Table V,
corresponding to the spatial and channel weights of features
generated by the PPCR, in the PE, filtering noise based
on spatial and channel information concurrently yields the
best results. The classical CoT involves cascading several
prompts, but long-range modeling is constrained, resulting
in suboptimal performance. In contrast, residual connections
can selectively preserve critical features and propagate along
the chain. Dense connections further improve performance.
And leveraging channel shuffle to mimic the transformation
of mirror symmetry in semantic space brings additional ben-
efits. Contrasting Models XIV and XV, dividing the semantic
representation into several sub-regions through the grouping
mechanism helps preserve local features and achieve multi-
path prompts purification.

5) Effect of components of the MPIE. As shown in Table
VI, after introducing MoE, even without the additional design
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Fig. 11. Hyperparameter sensitivity analysis (corresponding to Fig. 10). All analyses are performed by sweeping one hyperparameter at a time while holding
others fixed at their optimal values.

Image Model Ⅱ GT Model Ⅲ Model Ⅳ Model Ⅴ Model Ⅵ Model Ⅶ Uncer. Ⅰ Uncer. Ⅱ Uncer. Ⅲ Model Ⅰ

Fig. 12. Qualitative ablation of different component combinations. The model
names correspond to Table II. Uncer. denotes uncertainty map.

Image GT Random Prompt Ⅰ Prompt Ⅱ Prompt Ⅲ Feature Ⅰ Feature Ⅱ Feature Ⅲ Heat Ⅰ Heat Ⅱ Heat Ⅲ

Fig. 13. Qualitative ablation on different state visual prompts, feature maps,
and heat maps. For convenience, we select three prompts.

of complex experts, the performance of Models II surpasses
Model I through simple fusion operations, demonstrating the
necessity of dynamic routing experts based on input. Com-
paring Models II-IV with Models V-XI, more fine-grained
representations, involving low- and high-frequency prompts
and more diverse interactive spaces, i.e., spatial, channel,
and frequency, signifies that sub-space partitioning and new
space generation can achieve better injection effects. For
frequency decomposition, in comparison between Models XV
and XVI, employing all kernel elements is suboptimal. Instead,
the sparse mechanism can filter out low-information or even

Image

Ours

GT

Glass Shadow CamouflageSaliency Underwater RS

Fig. 14. Qualitative results on other scenes.

Image

Ours

GT

Glass Shadow CamouflageSaliency Underwater RS

Fig. 15. Qualitative results on failure cases.

noisy elements, where less is more desirable. Unlike Fourier,
Wavelet, and Laplace transforms that use fixed basis functions,
which may lead to poor performance when the features vary
significantly, our dynamic kernel can learn and adjust kernel
parameters based on input data, making it more sensitive to
the scene changes i.e., Models XII-XIV and XVI. For different
stages, alternately employing foreground-background masks
for guidance enhances the perception of feature distinctive-
ness, proving more effective than using a single type of mask.
Due to the inherent noise and the tendency to overlook regions
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of high uncertainty during the optimization process, using
uncertainty estimation as guidance can provide focus position.
In Figure 13, we present uncertainty maps generated/injected
at different stages. Why choose Evidential Deep Learning
(EDL) over Monte Carlo Sampling (MCS) to generate uncer-
tainty maps? 1) Unlike MCS, which estimates uncertainty by
multiple forward passes, EDL achieves higher computational
efficiency during inference by directly outputting uncertainty
measures (such as evidence values); 2) SVRNet has several
critical hyperparameters, such as the number of prompts; using
MCS would re-determine the number of sampling points,
constraining the model’s generalization capability.

For hyperparameters, we analyze on the MSD dataset, and
similarly on the PMD dataset.

6) Effect of the number of prototypes Nv . As shown Figure
10 column 1, when Nv = 0, no historical prior information
is provided for prompts. When Nv ≤ 6, the prototypes are
initialized and gradually accumulated, with small increases in
performance. When 6 < Nv ≤ 10, as the prototype quality
improves and heterogeneity enhances, the increase becomes
significantly larger. However, when 10 < Nv , the prototype
update magnitude is limited, and the performance increase
slows down. Besides, the model and computational complexity
show overall linear growth. To achieve a balance between
efficiency and performance, we set Nv = 10.

7) Effect of the number of prompts Np. In Figure 10 column
2, as Np increases, the performance gradually improves.
When 4 < Np, the results remain essentially unchanged,
indicating the state of redundancy where the introduction
of more prompts yields minimal benefits. Combining with
the complexity of computation and model, we set Np = 4.
In Figure 13, we observe that visual prompts progressively
approach the objects, providing guidance.

8) Effect of the sparsity of frequency decomposition κ. In
Figure 10 column 3, when selecting global kernel elements,
κ = 100%. As κ ranges from 1% to 85%, the performance
of the five indicators improves gradually. We analyze that
when quite a few key elements are selected, other equally
important elements are also filtered out, which is unfavorable
for decomposition. When κ = 85%, the decomposition effect
is optimal, corresponding to the best performance. When
κ exceeds 85%, noise and low-quality elements are also
included, which interfere with the decomposition process.

9) Effect of the number of candidate experts Ne and
activated expert Nae. In Figure 10 column 4 and 5, Ne = 1
represents the fixed path. For 1 < Ne ≤ 6, as Ne increases, the
expandable path grows larger, and performance improvement
is significant. When 6 < Ne, the improvement slows down,
indicating that the overall semantic spatial partitioning is
mostly completed, and the benefits of finer-grained partitioning
are limited. To achieve a better balance, we choose Ne = 6
to compare different numbers of active experts. Performance
improves when 1 < Nae ≤ 4, then declines, highlighting the
importance of expert number and sparsity. We set Nae = 4. In

10) Effect of the number of rank Nr. As shown in Table 10,
we first conduct three sets of experiments. 1) All experts use
the minimum rank, i.e., 4; 2) All experts use the maximum
rank, i.e., 108; 3) Ranks are arbitrarily selected from minimum

to maximum. The best performance in the third set indicates
that rank variation among experts can enhance heterogeneity,
i.e., diversity. We further explore rank allocation strategies: 1)
Linear growth; 2) Exponential growth; 3) Random selection,
with the second approach yielding better performance. We
analyze that arithmetic progression is inferior to exponential
growth in reflecting rank differences, while randomness lacks
stability. In Figure 10 column 6, we also provide the best rank
combinations, i.e, 16/64.

In Figure 11, we further conduct sensitivity analysis. These
sensitivity patterns are nearly identical between MSD and
PMD, confirming that our model’s robustness is not dataset-
specific but stems from its architectural design. The fact
that peak performance is attainable across multiple distinct
hyperparameter combinations rather than being confined to a
narrow optimal point further underscores the practicality and
reproducibility of our approach.

TABLE VIII
QUANTITATIVE COMPARISON ON GLASS, SHADOW, SALIENCE,

CAMOUFLAGE, UNDERWATER, AND REMOTE SENSING BENCHMARKS. †:
THE COMPARATIVE RESULTS OF OUR METHOD ARE REPORTED AS THE

AVERAGE OVER MULTIPLE RANDOM SEEDS.

Methods GDD ISTD DUTS

MAE↓ Sm↑ Em↑ Fw
β ↑ IoU↑ MAE↓ Sm↑ Em↑ Fw

β ↑ IoU↑ MAE↓ Sm↑ Em↑ Fw
β ↑ IoU↑

CSFwinformer [9] TIP’24 0.042 ‡ ‡ ‡ 0.912 0.026 ‡ ‡ ‡ 0.833 0.027 0.914 0.945 0.880 0.818
CamoFormer [73] TPAMI’24 0.043 0.907 0.942 0.933 0.915 0.015 0.949 0.967 0.926 0.927 0.025 0.915 0.947 0.882 0.820

Spider [15] ICML’24 0.044 0.903 0.938 0.929 0.910 0.019 0.935 0.964 0.882 0.911 0.029 0.909 0.942 0.869 0.800
VSCode [32] CVPR’24 0.046 0.901 0.931 0.924 0.909 0.020 0.929 0.951 0.897 0.908 0.026 0.918 0.948 0.883 0.816

DualSAM [13] CVPR’24 0.048 0.890 0.925 0.922 0.900 0.014 0.944 0.969 0.925 0.902 0.028 0.916 0.951 0.885 0.815

Ours† 0.040 0.916 0.949 0.939 0.924 0.012 0.961 0.967 0.940 0.937 0.023 0.924 0.959 0.898 0.835

Methods COD10K MAS3K ORSI4199

MAE↓ Sm↑ Em↑ Fw
β ↑ IoU↑ MAE↓ Sm↑ Em↑ Fw

β ↑ IoU↑ MAE↓ Sm↑ Em↑ Fw
β ↑ IoU↑

CSFwinformer [9] TIP’24 0.027 0.849 0.895 0.732 0.680 0.026 0.869 0.827 0.924 0.777 0.030 0.869 0.933 0.845 0.763
CamoFormer [73] TPAMI’24 0.023 0.869 0.931 0.786 0.726 0.024 0.888 0.840 0.930 0.788 0.029 0.883 0.943 0.862 0.782

Spider [15] ICML’24 0.027 0.853 0.918 0.756 0.701 0.025 0.875 0.844 0.925 0.792 0.029 0.878 0.940 0.857 0.758
VSCode [32] CVPR’24 0.028 0.847 0.913 0.744 0.688 0.026 0.862 0.814 0.920 0.769 0.028 0.877 0.945 0.855 0.762

DualSAM [13] CVPR’24 0.028 0.837 0.902 0.746 0.690 0.023 0.884 0.838 0.933 0.789 0.030 0.855 0.928 0.843 0.753

Ours† 0.023 0.875 0.941 0.794 0.740 0.022 0.897 0.859 0.943 0.804 0.029 0.889 0.952 0.873 0.795

E. Broader Impacts
1) Quantitative comparison: In Table VIII, our SVRNet

achieves promising performance on six different task bench-
marks and five evaluation metrics. Different from VSCode,
which applies additional data like depth maps to train, SVRNet
only utilizes training images corresponding to each bench-
mark, achieving an IoU exceeding 5.2% on COD10K. EVP
and Spider, based on prompt learning, concentrate on general
low-level structure segmentation. However, the former directly
leverages high-frequency features of images as visual prompts,
resulting in subpar performance for non-natural images such as
those in remote sensing that are prone to complex background
interference, similar to CSFwinformer. The latter introduces
macro-level task prompts but lacks micro-level image-specific
prompt associations, making it challenging to handle objects
with rich details. ICON and GateNet, due to relatively simple
model structures, have limited representation space. FSPNet
and CamoFormer are designed for COD and perform well
in underwater scenarios where objects exhibit camouflage
properties. Similarly, DualSAM excels in COD scenes.

2) Qualitative results: As shown in Figure 14, the first
row demonstrates transparent object scenarios. The second row
illustrates scenes with shadow deformation and lighting varia-
tions. The third row showcases salient objects in complex nat-
ural backgrounds. The fourth row displays highly camouflaged
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targets. The fifth row depicts low-contrast underwater scenes.
The sixth row presents complex remote sensing scenarios.
Our method achieves accurate localization and comprehensive
detection driven by the characteristics of different tasks.

3) Why can SVRNet work on various tasks? The core
of SVRNet lies in scene-aware visual reasoning, enabling
it to equip different lengths and types of reasoning chains
and hybrid experts based on the characteristics of inputs,
achieving customization. When dealing with glass, natural,
and camouflage scenes, our model pays more attention to
context awareness and differential modeling, such as depth and
frequency. In remote sensing scenarios, the target scales are
typically smaller and easily affected by complex background
interference, hence requiring more visual prompts and experts.
In shadow and underwater scenes, the model focuses more
on low-level visual features, such as light intensity and color.
Currently, our scene-aware visual reasoning is limited to a
single RGB modality. Moving forward, we intend to expand its
application to special modalities (e.g., SAR [74]) and various
multi-modal reasoning tasks [75]–[77].

4) Why does SVRNet fail in some cases? In Figure 15, the
failure cases of SVRNet mainly stem from extreme visual
ambiguities that challenge scene-aware reasoning. First, in
highly confusing glass scenes with severe multi-reflection su-
perposition, overlapping reflections distort the correspondence
between physical entities and their imagings, making it diffi-
cult to establish reliable spatial–semantic associations. Second,
in shadow detection (Column 2), small illumination variations
and cast shadows introduce strong context ambiguity, where
appearance cues of shadows and material boundaries become
highly entangled, leading to misinterpretation despite local
discriminability. Third, in highly irregular scenes (Columns
3–6), heavy occlusion and unconventional reflection mecha-
nisms substantially expand the effective feature space, causing
key cues to be diluted along the reasoning chain. Although
the proposed prompt evolution and uncertainty-aware learning
mitigate noise accumulation to some extent, these extreme
conditions remain challenging.

V. CONCLUSION

We rethink the existing MD paradigms and introduce visual
prompts. By incorporating hierarchical prototype banks and
prompt pools to construct mixed prompt chains for visual
spatial reasoning. We expect the prompts to effectively guide
localization, and we design coupled purification and statistical
uncertainty estimation. In response to the scene awareness of
the prompt chain, we also propose MPIE for custom injection
strategies for different inputs. We formulate the FPC loss to
decouple and obtain highly generalized representations. To
enrich the MD community, we relabel 25,828 images for
weakly supervised research. Our method achieves promising
performance on three task settings and ten datasets. Numerous
ablation experiments validate the effect of each component.
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