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Abstract

Reflective imaging enables the mirror imagings and physical
entities to possess identical attributes, e.g., color and shape.
Current mirror detection (MD) methods primarily rely on de-
signing functional components to establish the correlation
and disparities between the imagings and entities, thereby
identifying the mirror regions. However, the exploration of
extended scenes with dynamic content changes is rarely in-
vestigated. Therefore, we propose the MirrorSAM designed
for MD based on the Segment Anything Model (SAM).
Specifically, due to the varying reflections produced by mir-
rors in different positions and the complex visual space that
interferes with localization, we design the hierarchical mix-
ture of direction experts (HMDE) in the low-rank space to
reduce biases towards entities in SAM and dynamically ad-
just experts based on the input scene. We observe differences
in depth between mirrors and adjacent areas, and propose the
depth token calibration (DTC), which introduces a learnable
depth token to generate the depth map and serve as an er-
ror correction factor. We further formulate the selective pixel-
prototype contrastive (SPPC) loss, selecting partially confus-
able samples to promote the decoupling of mirror and non-
mirror representations. Extensive experiments conducted on
four mirror benchmarks and two settings demonstrate that our
approach surpasses state-of-the-art methods with few train-
able parameters and FLOPs. We further extend to four trans-
parent surface benchmarks to validate generalization.

Project — https://winter-flow.github.io/project/MirrorSAM

Introduction

Existing segmentation and detection works have made re-
markable progress in physical entity perception, but lack
exploration into virtual imaging. When objects with nearly
identical attributes coexist in the same visual space without
proper distinction, it can severely hinder downstream tasks,
e.g., path planning (Tang and Ma 2024) and 3D reconstruc-
tion (Liu et al. 2024). Mirror detection (MD) aims to dif-
ferentiate between mirror and non-mirror regions, providing
prior guidance for accurate scene understanding.

Existing MD methods typically rely on static designs, e.g,
context comparison (Guan, Lin, and Lau 2022), mirror sym-
metry characteristics (He, Lin, and Lau 2023), or low-level
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visual differences (Xie et al. 2024) (e.g., texture), which lack
adaptability to dynamic scenarios. Besides, MD encoun-
ters several challenges: 1) Reflection interference, requiring
strategies to handle complete/partial correspondences be-
tween entities and imagings; 2) Distinguishing mirrors from
other smooth and reflective objects, e.g., tiles and glasses; 3)
Deformation and occlusion, where variations in mirror re-
gions caused by shooting angles or obstructions make it dif-
ficult to rely on predefined shape priors for discrimination.
A common approach to address these issues involves com-
bining multiple specialized components in a certain man-
ner to expand the representation space, posing computa-
tional complexity and coordination challenges among com-
ponents. Furthermore, mirrors can reflect any entity, but ex-
isting datasets only capture a subset of possibilities, lacking
adequate prior knowledge. Therefore, we propose the Mir-
rorSAM based on SAM (Kirillov et al. 2023), which incor-
porates direction-aware expert groups for fine-tuning, depth
calibration, and partial pixel-prototype contrastive learning.
This raises three key questions: 1) Why introduce expert
learning and direction-aware mechanism? 2) Why introduce
depth calibration, and how does it differ from depth priors?
3) Why not use full-pixel contrastive learning?

We answer the first question. SAM trained on numerous
images containing physical entities, excels at capturing en-
tity representations but remains insensitive to virtual imag-
ings. Initially, we utilize LoRA (Hu et al. 2021) with mini-
mal learnable parameters to fine-tune the image encoder for
the MD task, yet the performance is not superior. To broaden
the perceptual space, we introduce mixture of experts (MoE)
(Jacobs et al. 1991) that dynamically select subsets of highly
responsive experts based on input to uniformly choose so-
Iutions. Each expert is responsible for partial representa-
tions and scenes, collaborating with others to avoid conflicts
and redundancies that arise from directly combining mul-
tiple components. This approach not only reduces compu-
tational complexity but also simplifies the structure of ex-
perts, minimizing internal uncertainties. In specific scenar-
ios, the relationships between all corresponding entities and
imagings exhibit a certain directionality. In other words, dif-
ferent entity-imaging regions can implicitly achieve consis-
tency through directions acting as bridges. Unlike previous
works (Huang et al. 2023; He, Lin, and Lau 2023) that estab-
lish symmetry by fixed-angle rotations, e.g., 90 degrees or



multiples, we propose a direction-aware mechanism based
on coordinate systems and kernel learning. This allows for
arbitrary-angle consistency, significantly expanding the po-
tential solution space and enhancing flexibility.

We answer the second question. Based on the physical
principle of planar mirror imaging (Born and Wolf 2013),
the distances from an object to the mirror surface and its
reflection are equal. Consequently, the depth within the mir-
ror region is significantly greater than that of adjacent non-
mirror regions, and accurate depth differences can effec-
tively aid in localization. Unlike multimodal segmentation
frameworks (Mei et al. 2021), which directly use depth
maps as additional inputs and progressively fuse them with
RGB features, we propose a more efficient approach. Specif-
ically, we introduce an extra token to generate a depth map
at the output end and utilize an error map for calibration.
Considering: 1) In real-world scenarios, obtaining (Depth,
RGB) pairs is often impractical; 2) Dual-stream networks
incur high training and deployment costs. Our single-stream
framework achieves high-quality predictions without requir-
ing paired testing data.

We answer the third question. Pixel-to-pixel contrastive
learning focuses on local regions and lacks contextual un-
derstanding, which may cause local optima and high compu-
tational complexity of O(N?2). Prototypes capture the global
characteristics of mirror and non-mirror regions, providing
robust references for pixel-level differentiation with a re-
duced complexity of O(N). Simple samples contribute lit-
tle to training, and hard samples may introduce noises or
outliers, thus excessive focus risks overfitting. To balance
these issues, we prioritize semi-hard samples, which en-
courage the model to refine the attention on critical regions.
Additionally, our approach restricts contrastive learning to
within-sample, i.e., non-generalized intra-batch contrasts.

Technically, we introduce the HMDE to bridge the repre-
sentation gap between physical entities and mirrored imag-
ings. The HMDE dynamically adjusts the structure based on
scene context, enabling omni-perception. Furthermore, we
propose the DTC, which differs from leveraging output to-
kens for generating detection maps. Instead, depth tokens are
utilized for generating depth maps and guiding the model to
focus on error-prone areas. To disentangle representations,
we formulate the SPPC loss to emphasize pixel and pro-
totype differences, especially for confusable samples. Ex-
tensive experiments conducted on eight benchmarks demon-
strate the effect of the proposed approach.

In summary, our main contributions are as follows:

e We formulate the MirrorSAM based on expert learning
and hierarchical modeling for perceiving mirror regions.

e We propose three customized components, the HMDE
to automatically adapt to various scenes and imagings
content changes, the DTC as the constraint to encour-
age focusing on depth error regions, refine prediction re-
sults, and the SPPC loss to selectively learn decoupled
and compacted representations.

» Extensive experiments on four mirror and four transpar-
ent surface benchmarks validate the superiority of the
proposed method and the effect of components.

Related Work

Mirror Detection. Mirrors reflect physical entities and cre-
ate identical yet illusory imagings, which can seriously con-
fuse and impact the understanding and modeling of visual
space. For the fully-supervised setting, Yang et al. (Yang
et al. 2019) pioneered the first MD method, MirrorNet,
which leverages the correlation between internal and exter-
nal features of mirrors. Lin ef al. (Lin, Wang, and Lau 2020)
designed the PMDNet, which compares mirror features with
context for correspondence and incorporates edge informa-
tion. Guan et al. (Guan, Lin, and Lau 2022) constructed
semantic associations among objects based on graph rep-
resentation. These methods share the common motivation,
i.e., establishing the associations between entities and imag-
ings. Huang et al. (Huang et al. 2023) developed the dual-
stream network based on Transformer to exploit the symme-
try property of mirrors. He et al. (He, Lin, and Lau 2023)
presented the HetNet, which combines low-level and high-
level features in a heterogeneous manner. Both aim to uti-
lize rotation strategies to construct mirror symmetry consis-
tency. Other works (Mei et al. 2021; Tan et al. 2022; Zha
et al. 2024a; Xie et al. 2024) leveraged the structure differ-
ences between mirror and non-mirror regions to distinguish,
i.e., depth, content distribution, and frequency. For the data-
efficient setting, Zha et al. (Zha et al. 2024b) introduced the
first weakly supervised dataset and model based on scrib-
ble annotations, i.e., WSMD, achieving performance com-
parable to fully supervised methods. Lin et al. (Lin and Lau
2023) formulated the self-supervised pre-training strategy.
For the video-level setting, Lin et al. (Lin, Tan, and Lau
2023) proposed the first video-level dataset and model, ie,
VMD. Warren et al. (Warren et al. 2024) improved based on
inconsistent motion clues. Xu et al. (Xu, Siu, and Lau 2024)
focused on extremely-weak supervision.

SAM for Downstream Tasks. (Chen et al. 2023) intro-
duced several adapters containing two-layer MLPs. (Yu et al.
2024) integrated traditional segmentation frameworks with
SAM and directly encoded depth maps as cues. (Zhang et al.
2024) designed a dual-stream multi-scale guidance architec-
ture for underwater animal scenes. However, MD-specific
SAM has been scarcely explored. Our MirrorSAM explores
and proves the potential.

Proposed Method
Overall Architecture

As illustrated in Figure 1, the MirrorSAM framework builds
upon the basic structure of SAM. The HMDE is integrated
into the image encoder, and the DTC is incorporated into the
pixel decoder. Using the last layer features of the decoder
and the predicted maps, we generate prototypes and com-
pute the SPPC loss. Additionally, the primary loss function
is adapted based on the specific supervision setting.

Hierarchical Mixture of Direction Experts

In previous works (Zhang et al. 2024; Cheng et al. 2024),
LoRA is directly applied to the image encoder to modu-
late features for specific tasks. Considering the complex-
ity and ambiguity of the MD visual space, we introduce
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Figure 1: The framework of our MirrorSAM. Given any input image, we utilize the image encoder to extract features, where
the HMDE modulates features at each stage. We adaptively fuse features from multiple scales. Subsequently, the depth token,
prompt token, and output token are fed to the decoder to obtain depth estimation maps and prediction maps. For the prediction
maps, we apply the SPPC loss as a constraint. For the depth maps, we apply two losses, one for supervision and the other for
calibration. When weak (scribble or point) supervision is applied, we only adjust the output side, i.e., loss function.

expert learning and directional correlation. We expand ex-
pert groups within each LoRA to increase representation
capacity and specialization, enabling better handling of di-
verse scenes and imaging content variations. When imag-
ings and corresponding entities align perfectly, we can es-
tablish global semantic awareness based on directional con-
sistency. For partial matches, directional signals are learned
from paired samples and propagated to unmatched ones to
achieve complementarity.

Specifically, given input image X € R3*HoxWo e
utilize the encoder to obtain multi-scale features F? €
RCE:*H:ixWi (channel, height, and width) and optimize pa-
rameters through the HMDE. We define the angle 0 of each
directional convolution kernel Kg(m,n) € RE*knxkuw
and calculate the transformed direction by applying the ro-
tation matrix to the standard convolution K(m', n’),

7] & [re] o

where m/ and n’ are the rotated coordinates, c,, and c,, are
the coordinates of the center point of the kernel.

We then obtain feature updates specific to the direction,

kp—1 kyw—1
Ry =3 S S
Fz(c,p+m7q+n)~K9(c'7c,m,n)

where (p, q) represents the pixel position. Based on the di-
rectional kernel, we further extend to the MoE paradigm.
MoE comprises two core elements: the routing network G
and the experts £. The routing network assigns weights to
the experts, while the experts handle specific representa-
tions. Intuitively, imagings and entities features could be al-
located to different experts, enabling heterogeneous process-
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ing and decoupling. For F, we have,

G(F') = Softmax (F(Gap(F")) + N) 3)
where F, GAP, and N denote convolution, global average
pooling, and Gaussian distribution noise, respectively. Noise
is used to mitigate biases and is only applied during the train-
ing phase, being removed during the testing phase. We set
learnable 6 for each expert and integrate features from sev-
eral directions. However, assigning weights and activations
to all experts by G may weaken communication between
the experts and be inefficient. We divide the expert group
into shared and specific experts. The former perceive gen-
eral reflection imaging and associated directions, while the
latter, anchored to the former, construct consistency and cus-

tomized constraints,
N, N,

=) CEREY+ > GREY)-EREL ) +F (@)

k=1 k=N,+1

where N and N, represent the number of shared experts
and total experts, respectively. During the testing phase, to
ensure high efficiency, we activate the Top-2 weighted ex-
perts and ignore the remaining. Compared to LoRA, despite
the additional learning cost introduced, the performance im-
provement is significant.

Ideally, the workload of all experts is N% To avoid over-
load of partial experts and idleness of others, we reduce the
excessive reliance of the gate network on input based on mu-
tual information (MI) (Kraskov, Stogbauer, and Grassberger
2004) Z,

I(F;G(F)) = H(G(F)) — H(G(F)[F) (5)
where a smaller Z indicates a more balanced load,
and the former and latter represent the entropy



and conditional entropy of expert assignments, re-
spectively. Our objective is to minimize Z. For
gx") = [g"(x"), g*(x"), ..., gN Mo (x)], we let
Zk (x") = 1, where ¢*(x ") represents the
probablhty of assigning the n-th sample in the batch B to
the k-th expert. We reformulate Eq. 5 as,

N,
I(F;G(F) =— Y Ex[g"(x)]logEx[g"(x)]
k=Ng+1
(6)
+ = Z Z ™) log g*(x™)
n=1k=Ns+1

To enable experts to learn heterogeneous knowledge, we
leverage game theory (Fudenberg 1991) to cultivate the com-
petitive relationship among experts, where each expert aims
to maximize the uniqueness of their own representations,
i.e., mutual opposition. We implement by Lcomp,

Loomp =3 12 x [sim(€(x), &7 (x))] ()

where sim is the cosine 51m11ar1ty. The constraint loss
Lumpg for the HMDE can be defined as,

‘CHMDE = )\MIZ + AComp'ccomp (8)
where Ay and Agomp are balance parameters.

Depth Token Calibration

Modeling the spatial geometry of the scenes through depth
differences estimation facilitates discrimination. The most
direct approach is to incorporate paired depth maps or those
estimated by pretrained models as the prior and explicitly in-
ject the RGB modality to form the multi-branch architecture
for input (or output). Considering error accumulation and
computational costs, we introduce a depth token for depth
map generation, formulating two heads for output-level cal-
ibration. Unlike segmentation branches that encode only the
semantic-rich features of the encoder’s final layer for decod-
ing, we select features at multiple scales to provide rich de-
tails and semantics for geometry perception.

Technically, due to differences in high-level and low-
level representations, we choose L scales (in practice, L =
{3,6,9,12}) and generate spatial and channel weight distri-
butions, i.e., Agpatial and Achannel by,

FOo FEY))

where o denotes the sigmoid function. Note that the convo-
lution parameter settings for generating Agpaial and A channel
are different. We further partition and allocate the overall
weights to each sub-item for adaptive fusion,

Fdepth - Z Fl Aspatlal Alchannel (10)

We fuse the learnable depth token and features F,y to
derive estimated depth maps O,. We further utilize the depth
loss Lpepth (i.e., Huber loss, robust to noises) to optimize
and generate error maps E,

E = |[logO4 — log Ocr(q)l| (11)
where || - || denotes Min-Max normalization. To enhance the

Aspatiala A hannel = 0

contrast of neighboring regions while ensuring convergence
stability, we leverage a logarithmic transformation. Directly
applying noise-carrying E to the segmentation maps Oq(s)
may disrupt the correct regions. We formulate Lg,o; to pro-
mote focusing on error regions through implicit calibration,

; — 30 S B % Oy, log(0F)
Error — (12)
S e B 4 e

where € is an extremely small value.

Selective Pixel-Prototype Contrastive Loss

Unlike prior works that establish robust semantic knowledge
by contrasting across images, considering that: 1) Due to
reflective imaging, even the same mirror placed in differ-
ent scenes or at different positions within the same scene,
or with adjusted spatial relationships of entities, presents
different contents, indicating that mirrors are highly scene-
dependent and sensitive to spatial arrangements; 2) The lim-
ited scale and diversity of existing mirror datasets make it
challenging to learn universal representations; 3) Mirror and
non-mirror regions within individual samples exhibit certain
distributional distinctiveness. Considering the above, we for-
mulate the hierarchical aggregation from pixel-to-prototype
and pixel-to-pixel at the intra-sample level. The similarity
of content inside and outside the mirror results cause pixels
exhibiting ambiguity, thus we aim to select samples that are
easily confused for particular attention.

In detail, we leverage the final layer feature F o of the de-
coder along with the foreground and background segmenta-
tion map Oy, 1 — Oy to generate foreground and background
prototypes, i.e., Py and Py as base reference,

le OZ] out P Z (1 - 02]) out (13)
—— i =

217] O” ZZJ(]‘ - OZSJ)

For the pixel feature £/ at position (4,5), we establish
its Laplacian distribution to accelerate computation and im-
prove noise resistance (compared to the Gaussian distribu-
tion),

(V- U (- !

W S e, 2
(p,q)eM(i,9)
where 1 and b represent the location and scale parameters,
respectively, |M (4, )| represents the number of neighbor-
ing pixels (e.g., 3x3) for the pixel P¥ (i.e., dynamic re-
gion generation, as opposed to fixed partitioning at the patch
level). We further calculate the distance between pixel dis-

tributions, e.g, negative pairs

“ k:l kl,c Ifij,c _ fkl,c|

For each anchor plxel, confusable samples are selected
according to the rule,

‘S/\/ — {Pkl ‘ pmn < Dkl < (1+Oz) ~Dmn} (16)
where D" = D(PY,P™"), DM = D(PY, PM), pmn
represent positive sample pixels, and « is the interval pa-

rameter. The inherent uncertainty within pixels is difficult to
measure through distance. We aim to assign higher weights

Py =

[£79 — u¥| (14)




to high-uncertainty pixels. We define the differential entropy
H aq of region M as,

Ha =1+ 1n(2b) (17)

Thus, the pixel weight w for S is generated by normaliz-

ing H. Similarly, we can obtain the semi-hard positive sam-
ple pool Sp. We derive the SPPC loss Lsppc,

1 B |Spl } 0 i
Lsppc = B Zi:l Z r log [wk . Slm,(S;;( ),Pi))

k=1

1
sin'(SE, PY) + I wi - sin' (Sp7, S3E )]

(18)
where sim’ = exp(sim)/7, 7 is a temperature coefficient.
Note that P, and P_ (not Py and P,) represent the positive
and negative prototypes, updated from S5 and S£ based
on momentum m. For the fully-supervised setting, follow-
ing (He, Lin, and Lau 2023), we leverage Lstucture as the
primary loss,

AcL (19)

ETotal = ﬁStructure + §
LE€{ Lsppc,Lpepth s LError LHMDE }

where A\, denotes weight parameter. For weakly-supervised
setting, following (Zha et al. 2024b), we switch the primary
loss to £E2tal And we adjust Lsppc to LML

Experiments

Datasets. We conduct experiments on eight datasets. Mir-
ror datasets: MSD (Yang et al. 2019) and PMD (Lin, Wang,
and Lau 2020) datasets contain 3,063 and 5,096 training
images, 955 and 571 testing images, respectively. MirrorD
(Mei et al. 2021) contains 2,000 training images and 1,049
testing images, and is accompanied by depth maps. VMD
(Lin, Tan, and Lau 2023) has 143 (7,835 images) and 126
(7,152 images) videos for training and testing. Transpar-
ent surface datasets: GDD (Mei et al. 2020) contains 2,980
training images and 936 testing images. GSD (Lin, He, and
Lau 2021) consists of 3,202 training pairs and 810 testing
pairs, with a larger coverage of regions and contrast distribu-
tions. GlassD (Lin, Yeung, and Lau 2022) comprises 2,400
training images and 609 testing images with paired depth
maps. Trans 10K (Xie et al. 2020) consists of 10,428 images
with three categories: things, stuff, and background. Images
are divided into 5,000, 1,000, and 4,428 images for training,
validation, and testing, respectively.

Implementation Details. We implement the model and con-
duct experiments on an A100 GPU via Pytorch. To reduce
memory consumption and align with the settings in (Xie
et al. 2024; Huang et al. 2023), we adjust the input size from
the default 1024x1024 to 512x512 and initialize the param-
eters with pre-trained SAM-B. We utilize the AdamW opti-
mizer to update the parameters, with the initial learning rate
and the weight decay both set to 0.001. The batch size is 16,
and the total epochs is 200. During the training phase, we
freeze the base components, e.g., image encoder, and opti-
mize the DTC and the HMDE. During the testing phase, we
do not employ any post-processing operations, e.g., CRF.
If depth labels are not provided, we leverage (Yang et al.
2024b) for generation.

Evaluation Metrics. We adopt seven evaluation metrics:

S-measure (.5,,,) (Fan et al. 2017), mean E-measure (F,,)
(Fan et al. 2018), weighted F-measure, (Fg’), maximum F-
measure(fg) (Margolin, Zelnik-Manor, and Tal 2014), Inter-
section over union (IoU), Mean Absolute Error (MAE), and
Balance Error Rate (BER). Note that the higher the better
for the first five. To evaluate efficiency, we leverage model
trainable parameters and computational complexity.

Comparison with SOTA Methods

Quantitative Comparison. In Table 1, our approach outper-
forms various types of methods, e.g., DualSAM, with gains
of 1.4%, 3.3%, 2.6%, 4.2%, and 6.5% respectively on the
five metrics of the MSD dataset, and the average surpasses
CSFW by around 5.0%, which demonstrates the effective-
ness of expert adaptation and differential learning. In Ta-
ble 3, our method achieves comparable performance with-
out complex modality fusion and temporal signal. In Table
2, the trainable parameters and FLOPs of MirrorSAM are
about one-fifteenth and one-thirty-fifth of CSFW, respec-
tively, highlighting the efficiency.

Qualitative Comparison. We consider different scenarios
and provide visualizations for comparison. In Figure 2, the
first line illustrates smooth surface interference, i.e., tile.
The second and third rows depict incomplete correspon-
dence and irregular occlusion. The fourth row pertains to
situations with only imagings and no corresponding physi-
cal entities. The last row demonstrates complex multi-object
perception. Our approach effectively handles intricate visual
spatial variations and reflection interferences.

Ablation Study and Discussion

We validate the effect of the proposed components (Table 4,
Figure 3) and crucial hyperparameter settings (Figure 4) on
the MSD and PMD datasets.

Expert Modeling. Directly applying the vanilla SAM to
MD yields unsatisfactory results, but incorporating LoRA
fine-tuning (Table 4 Line 9) significantly improves perfor-
mance, highlighting the necessity of domain knowledge
adaptation. Introducing the HMDE to establish dynamic per-
ceptual scene changes and perceive visual spatial content
and geometric relationships in arbitrary directions further
enhances the effect, with the two elements (MoE and angle)
proving complementary. We further boost through Lynpg-
controlled diverse experts.

Depth Injection. We explore three strategies: 1) Fusing
depth map and RGB image as input; 2) Using the depth map
as the dense prompt during the training phase; 3) Employing
for the full phase, yet the performance is inferior to calibrat-
ing at the output end. We attribute this to the noise and in-
accuracies in depth maps generated by pre-trained depth es-
timation models (or low-quality paired), which can degrade
original representations when explicitly encoded and inter-
acted with. In contrast, implicit depth learning through gra-
dient optimization facilitates calibration and enhances fea-
ture quality. Moreover, not using depth maps during the test-
ing phase is more aligned with practical deployment.
Contrast Settings. Pixel-, prototype-, and pixel-prototype-
level contrastive learning are all inferior to the SPPC. We an-
alyze: 1) The insufficient number of prototypes, even for the



Methods | At | Tr}:;nsfodrmer | Foll\l/?d;tllon | Prompt | MSD | PMD

| et | MAEL 5.1 FE.1 Fgt ToUf | MAEL S.1  E.t  Fyt IoUt
UDUN (Pei et al. 2023) yvr23 S X X X 0.071 0.815 0.838 0746 0.713 | 0.039 0.784 0.794 0.652 0.600
MENet (Wang et al. 2023) cypr23 S X X X 0.054 0.868 0906 0.829 0.805 | 0.033 0.826 0.873 0.727 0.680
MirrorNet (Yang et al. 2019) ccvei9 M X X X 0.065 0.850 0.891 0.812 0.790 | 0.043 0.761 0.841 0.663 0.585
PMDNet (Lin, Wang, and Lau 2020) cyprao | M X X X 0.047 0.875 0908 0.845 0.815 | 0.032 0810 0.859 0.716 0.660
SANet (Guan, Lin, and Lau 2022) cvpr22 M X X X 0.054 0.862 0.898 0.829 0.798 | 0.071 0.808 0.839 0.721 0.668
VCNet (Tan et al. 2022) tpamr22 M X X X 0.044 b t T 0.854 | 0.028 T T T 0.694
HetNet (He, Lin, and Lau 2023) Aaar23 M X X X 0.043  0.881 0921 0854 0.824 | 0.029 0.828 0.865 0.734 0.690
SETR (Zheng et al. 2021) cyprea; S v X X 0.071 0797 0.840 0.750 0.690 | 0.035 0.753 0775 0.633 0.564
VST (Liu et al. 2021) jccv-ar S v x x 0.054 0.861 0901 0.818 0.791 | 0.036 0.783 0.814 0.639 0.591
DSAM (Yu et al. 2024) s C v v v 0.037 0.888 0919 0.871 0.832 | 0.031 0.800 0.839 0.745 0.666
VSCode (Luo et al. 2024) cypr-24 C v X v 0.077 0.800 0.820 0.721 0.687 | 0.042 0.787 0.816 0.656 0.607
FSEL (Sun et al. 2025) gccv-aa C v X X 0.043  0.868 0918 0.859 0.814 | 0.038 0.803 0.844 0.737 0.671
SAM (Kirillov et al. 2023) jccya3 G v v X 0.108 0755 0.768 0.689 0.624 | 0.063 0.688 0.711 0597 0.616
EVP (Liu et al. 2023) cvpro23 G v X v 0.064 0.845 0.896 0811 0.780 | 0.037 0793 0.861 0.694 0.634
LISA (Lai et al. 2024) cyproo4 G v v v 0.061 0.822 0.859 0799 0.771 | 0.044 0811 0.825 0.678 0.660
DualSAM (Zhang et al. 2024) cypr-24 0 v v v 0.039 0903 0932 0.882 0.848 | 0.034 0816 0.839 0705 0.636
HSAM (Cheng et al. 2024) cypr24 0 v v v 0.042 0878 0909 0.865 0.833 | 0.032 0.808 0.833 0.721 0.619
SATNet (Huang et al. 2023) aaar23 M v X X 0.033 0.887 0916 0.865 0.834 | 0.025 0.826 0.858 0.739 0.684
CSFW(Xie et al. 2024) p24 M v X X 0.045 0.875 0905 0.846 0.821 | 0.024 0.831 0.864 0.756 0.700
Ours M v v v 0.025 0936 0958 0924 0913 | 0.024 0.867 0.907 0.788 0.759

Table 1: Quantitative comparison on MSD and PMD datasets. S, C, G, O, M denote salience detection, camouflage detection,
general segmentation, other related tasks segmentation, and MD methods, respectively. Foundation models include e.g., LLMs
and SAM. Best performance in bold, second in underline. I represents data is unavailable. 1 indicates higher values are better,
while | indicates the opposite.

Image MENet  MirrorNet PMDNet  HetNet SETR VSCode EVP SATNet DualSAM  CSFW Ours GT

Figure 2: Qualitative comparison on MD scenarios. Best viewed by zooming in.

SATNet CSFW DualSAM WSMD  Ours Methods Depth MAE|. S,t E,t Fgt IoUt

FLOPs| (GMAC) 153.00 139.45 3951 21.39 421 VSCode (Luo et al. 2024) v 0.045  0.839 0.892 0.801 0.763
Params.| (M) 13936 150.54  74.30 26.16  10.23 O (003377 0.8797T0:925770:840 770,520
Methods Video MAE| S,T E,T Fyt IoUt

Table 2: Quantitative comparison of model efficiency. MGVMD (Warrenetal. 2024) v 0.103 0729 0.738 0.627 0.569
Ours X 009 0761 0775 0.655 0.600

. . . . Table 3: Comparison on MirrorD and VMD datasets.
entire batch, is not enough for contrast; 2) Pixels are easily parl

affected by noise interference; 3) Pixel-prototype treats all
samples equally. The selection and discrimination of semi-

hard positive/negative samples is crucial. performance, possibly due to providing more visual priors
SAM Prompt Strategies. In the baseline, prompts are auto- and avoiding semantic conflicts with text representations.

matically generated. We further explore: 1) Randomly shift- Crucial Hyperparameters. We observe that performance
ing several pixels based on GT to generate points and boxes gradually improves as 1 < N, < 7, but decreases when
prompt; 2) Leveraging Qwen (Yang et al. 2024a) to generate 7 < N,. We analyze that while each expert specializes in
image descriptions, which are then encoded into embedding part of the data space, excessive experts may cause conflicts
vectors using CLIP (Radford et al. 2021) and merged with and redundancies. When 10% < R, < 60%, performance

visual features. We observe that box prompts yield better gradually improves, but declines when 60% < Rj. This in-
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Figure 3: Qualitative ablation of proposed components. From top to bottom, the scenes include cross-imaging, complex corre-
spondence and occlusion, and smooth tabletop reflection interference. Partial variants correspond to Table 4.

Components/Strategies | MSD | PMD — Sm  —— FY Em —— loU —— MAE

IMAEL S,u1 EnT Fgt 10Ut [MAEL S, Ent Fy'T loUT 0961y R E 0,030
HMDE DPC SPPC  [0.108 0.755 0.768 0.689 0.624/0.063 0.688 0.711 0.597 0.616 Zoss ooz Loos \ / 0028
v X X 0.035 0.878 0.897 0.855 0.836]0.038 0.801 0.829 0.713 0.688 g A ©< o2 .
v v X 0.028 0.908 0.933 0.894 0.889(0.029 0.839 0.872 0.756 0.723 5 0.02 - o0gs 702
v X v 0.032 0.8950.918 0.888 0.8750.032 0.848 0.861 0.745 0.736 & /\-/ TN foozs & /\ 0.024
X v v 0.055 0.803 0.811 0.744 0.6850.051 0.746 0.766 0.651 0.645 2 os0 g | ™~
v v v 0.025 0.936 0.958 0.924 0.913]0.024 0.867 0.907 0.788 0.759 Pl 0.022 0.9 - 0.022

— ~—
MoE  Angle Livpr [0.043 0.846 0.856 0.801 0.783]0.044 0.773 0.785 0.678 0.661 3 0.020 o0 os os 19000
v X X 0.039 0.857 0.874 0.824 0.8010.042 0.784 0.796 0.689 0.672 Number of experts N (MSD) Ratio of hard samples R; (MSD)
v V't 0.037 0.868 0.885 0.839 0.820[0.039 0.792 0.813 0.695 0.680
v v v 0.035 0.878 0.897 0.855 0.836/0.038 0.801 0.829 0.713 0.688 Figure 4: Quantitative ablation of hyperparameter settings.
Dal DaP DaP'  |0.035 0.8780.897 0.855 0.836/0.038 0.801 0.829 0.713 0.688
v X X 0.033 0.885 0.883 0.866 0.848]0.035 0.815 0.838 0.725 0.695 - -
X v X 0.033 0.888 0.911 0.869 0.860|0.034 0.812 0.841 0.735 0.690 Methods | Scribble-MSD | Scribble-PMD
X X v 0.030 0.895 0.904 0.875 0.8550.032 0.820 0.847 0.729 0.699 IMAE S,,t E,t Fit IoUT|MAE S,,t E,t F§t IoUt
Lrro  Lrix Lpixepro|0.028 0.908 0.933 0.894 0.8890.029 0.839 0.872 0.756 0.723 PFA (Chan et al. 2024)[0.075 0.815 0.886 0.771 0.762]0.057 0.760 0.805 0.642 0.585
T WSMD 0.078 0.828 0.878 0.780 0.750|0.051 0.773 0.824 0.630 0.600
v X X 0.030 0.913 0.938 0.899 0.895]0.029 0.835 0.884 0.767 0.731 \
X % 0.028 0,915 0.945 0.906 0.9020.027 0.845 0.850 0.769 0.738 Ours 0.070 0.843 0.903 0.799 0.778 0.053 0.784 0.816 0.665 0.618
X ) SN 0.027 0.922 0.940 0.908 0.899]0.026 0.841 0.888 0.773 0.730 Method ‘ Point-MSD ‘ Poin-PMD
etl S

Ponit Box Text [0.025 0.936 0.958 0.924 0.913]0.024 0.867 0.907 0.788 0.759 0% IMAE St Enl FgT 1oUT|MAE S,t En.t Fyt IoUt
v x X 0.0230.942 0.955 0.932 0.918/0.022 0.875 0.916 0.797 0.769 PFA (Chan et al. 2024)[0.155 0.673 0.755 0.573 0.573]0.095 0.689 0.751 0.563 0.486
X v X 0.021 0.945 0.961 0.944 0.928(0.022 0.896 0.935 0.821 0.786 WSMD 0.163 0.696 0.742 0.586 0.560|0.091 0.706 0.760 0.550 0.501
X L 0.0220.941 0.964 0.940 0.925]0.022 0.888 0.928 0.308 0.780 Ours 0.147 0.719 0.768 0.613 0.584 0.088 0.716 0.777 0.583 0.519

Table 4: Quantitative ablation of components and strategies.
Dal, DaP, DaP", Lp,o, Lpix, and Lpixepro denote depth as
input, depth as prompt (training only), depth as prompt (full
phase), prototype-to-prototype, pixel-to-pixel, and pixel-to-
prototype contrastive learning, respectively.

dicates that the benefit from simple samples is limited, and
increasing proportion of confusable samples can enhance the
discriminative ability. However, too many hard samples may
cause matching errors and degrade performance.

Weakly-supervised Setting. In Table 5, we evaluate un-
der the weakly supervised setting based on the scribble and
point annotations provided by (Zha et al. 2025¢) on the MSD
and PMD datasets. Scribbles and points provide the basic
structure and location of the foreground and background,
respectively. Our method is superior and exhibits a larger
gap under the point setting. Beyond the critical components,
we attribute to: 1) Different from WSMD, which adopts
Canny(Canny 1986)-generated edge maps as supervision,
SAM provides more accurate and fine-grained knowledge
priors. 2) Unlike WSMD, which establishes prototype con-
trasts between images and prototype enhancements in PFA,
we consider the association of confusable pixels and dy-

Table 5: Weakly-supervised setting.

namic prototypes within a single sample. We argue that the
representations of mirror and non-mirror regions across im-
ages do not possess strong semantic correlations; thus, en-
forcing alignment may disrupt the original features.

| GDD | GSD
|IoUt FsT MAE| BER||IoUT Fszt MAE| BER|

0.874 0.929 0.062 5.79 |0.836 0.904 0.049 6.24
0.883 0.933 0.059 5.65 [0.849 0.912 0.050 6.02
0.887 0.945 0.051 5.08 |0.871 0.927 0.048 5.55

Methods \ GlassD \ Trans10K
|loUT Fst MAE| BER||IoUT Fs? MAE| BER]
0.699 0.825 0.046 11.42]0912 § 0.043 3.68

0.742 0.853 0.043 9.33 |0.899 0.878 0.046 3.55
0.764 0.875 0.038 8.28 |0.903 0.895 0.042 3.13

Methods

RFENet (Fan et al. 2023)
CMCM (Lin et al. 2025)
Ours

RFENet (Fan et al. 2023)
CMCM (Lin et al. 2025)
Ours

Table 6: Comparison on transparent surface datasets.

Broader Impacts. In Table 6, we achieve promising perfor-
mance as well. We attribute depth disparity and reliance on
orientation modeling. And we will explore more scenes (Zha
et al. 2025b), and multimodal learning (Zha et al. 2025a).
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